
Regularizing Action Policies
for Smooth Control with Reinforcement Learning

– Supplementary Material –

Siddharth Mysore
Department of Computer Sciences
Boston University United States

sidmys@bu.edu

Bassel Mabsout
Department of Computer Sciences
Boston University United States

bmabsout@bu.edu

Renato Mancuso
Department of Computer Sciences
Boston University United States

rmancuso@bu.edu

Kate Saenko
Department of Computer Sciences
Boston University United States

saenko@bu.edu

Keywords: Reinforcement Learning, Smooth Control, Regularization

A Toy Environment

A.1 Setup

The code for the toy environment and corresponding training is provided in the zip folder included
with this submission and, in the case of the paper’s acceptance, will be made public through github.
The simple toy environment is constructed as follows:

• State space: At time, t, the agent has a required goal, gt ∈ [−10, 10], and a current
state, ot ∈ [−10, 10]. These are stored internally. The state observation returned to the
agent is a 1D error, st = gt − ot.

• Goal generation: Goals are procedurally generated where gt is the result of a function
mapping g(t)→ [−10, 10]. Available goal generators include: [simplex[1], constant, step]

• Action Space: Actions are limited to the range of at ∈ [−1, 1].

• System Dynamics: The new state in response to action, at is computed as
ot+1 = clip(ot + at,−10, 10).

• Reward: Reward is computed as rt = −|gt − ot+1|.

• Ideal solution: This task could be easily solved by acting proportionally to st, with the
ideal response being at = clip(st,−1, 1).

A.2 Filtering

St
at

e
Unfiltered Butterworth (3rd order) Median (5th order) FIR (11th order) EMA (= 0.6)

Time

0

Ac
tio

n

Time Time Time Time

Figure 1: Filtering on the behavior of an agent that is not smooth. In our main paper, we showed
that filtering on a well trained agent can result in poor tracking performance. Here we show that
filtering a functional, but poorly trained agent — evidenced by a rudimentary ability of the agent to
track the signal when unfiltered — can result in a catastrophic loss of control if filters are tuned for
a controller that works well. With the lack of reproducibility in vanilla RL, this could result in two
similarly trained agents behaving remarkably differently when filtered if filters are not individually
tuned, adding to the difficulty of reproduction of functional control.

St
at

e

Unfiltered Butterworth (3rd order) Median (5th order) FIR (11th order) EMA (= 0.6)

Time

0Ac
tio

n

Time Time Time Time

Figure 2: Filtering used on the smooth agents shown in the main paper applied to the PID controller
on which they were tuned. Note that we do not observe any similar adverse effects of filtering with
any of these filters that we demonstrated in Fig. 3 of the main paper. We tuned the filters for critical
damping on the PID controller. The cut-off frequency and filter order were chosen to minimize
overshoot and lag.

2

B OpenAI Gym Benchmarks

B.1 Setup — Algorithms & Basic Hyper-parameters

We used 4 algorithms in our tests: PPO [2], DDPG [3], SAC [4], and TD3 [5]. For all the algo-
rithms except PPO, we used the implementations provided by OpenAI’s Spinning Up code-base [6].
For PPO, we used the implementation provided by OpenAI Baselines [7] as the Spinning up imple-
mentation omitted the running mean and standard deviation estimation for simplicity, but this does
inherently change the behavior of the algorithms. For consistency and reproducibility. the hyper-
parameters used for each environment/algorithm were copied from the RL zoo[8], provided by the
stable baselines library [9].

We used the following 4 training environments in our experiments:
We used Pendulum-v0 (Pendulum), LunlarLanderContinuous-v2 (Lunar Lander), Ant-v2 (Ant), and
Reacher-v2 (Reacher).

The code training with CAPS is provided in the zip folder included with this submission and, in the
case of the paper’s acceptance, will be made public through github.

B.2 Choosing CAPS Regularization Weights

In order to choose the regularization parameters for CAPS, we compared unregularized agents to
CAPS-regularized agents each trained with at least 11 random seeds and different regularization
values. We then selected regularization that consistently yielded the best tradeoff of smoothness
and performance on rewards. Training plots are shown in Fig. 4. These figures do not however
show results for PPO as it was not based on the Spinup [6] code-base and was incompatible with
the visualization tools, however we followed a similar procedure for determining good agents, only
based on console outputs instead of graphs.

We settled on the following regularization weights, λT and λS for each environment:

• Pendulum
– PPO: λT = 1.0e− 2, λS = 5.0e− 2

– others: λT = 1, λS = 5

• Lunar Lander
– PPO: λT = 1.0e− 3, λS = 5.0e− 3

– Others: λT = 1.0e− 1, λS = 5.0e− 1

• Reacher, Ant: λT = 1.0e− 1, λS = 5.0e− 1

3

0.2 0.4 0.6 0.8 1.0 1.2 1.4
TotalEnvInteracts 1e5

1600

1400

1200

1000

800

600

400

200

0

Pe
rfo

rm
an

ce
Pendulum-v0_0.0e+1_0.0e+1_ddpg
Pendulum-v0_1.0e+0_5.0e+0_ddpg
Pendulum-v0_1.0e+1_5.0e+1_ddpg
Pendulum-v0_1.0e+2_5.0e+2_ddpg
Pendulum-v0_1.0e-1_5.0e-1_ddpg
Pendulum-v0_1.0e-4_5.0e-4_ddpg
Pendulum-v0_1.6e-1_7.9e-1_ddpg
Pendulum-v0_2.5e-2_1.3e-1_ddpg
Pendulum-v0_4.0e-3_2.0e-2_ddpg
Pendulum-v0_6.3e-4_3.2e-3_ddpg

(a) Pendulum DDPG

0.2 0.4 0.6 0.8 1.0 1.2 1.4
TotalEnvInteracts 1e5

1400

1200

1000

800

600

400

200

0

Pe
rfo

rm
an

ce

Pendulum-v0_0.0e+1_0.0e+1_sac
Pendulum-v0_1.0e+0_5.0e+0_sac
Pendulum-v0_1.0e+1_5.0e+1_sac
Pendulum-v0_1.0e+2_5.0e+2_sac
Pendulum-v0_1.0e-1_5.0e-1_sac
Pendulum-v0_1.0e-4_5.0e-4_sac
Pendulum-v0_1.6e-1_7.9e-1_sac
Pendulum-v0_2.5e-2_1.3e-1_sac
Pendulum-v0_4.0e-3_2.0e-2_sac
Pendulum-v0_6.3e-4_3.2e-3_sac

(b) Pendulum SAC

0.2 0.4 0.6 0.8 1.0 1.2 1.4
TotalEnvInteracts 1e5

1600

1400

1200

1000

800

600

400

200

0

Pe
rfo

rm
an

ce

Pendulum-v0_0.0e+1_0.0e+1_td3
Pendulum-v0_1.0e+0_5.0e+0_td3
Pendulum-v0_1.0e+1_5.0e+1_td3
Pendulum-v0_1.0e+2_5.0e+2_td3
Pendulum-v0_1.0e-1_5.0e-1_td3
Pendulum-v0_1.0e-4_5.0e-4_td3
Pendulum-v0_1.6e-1_7.9e-1_td3
Pendulum-v0_2.5e-2_1.3e-1_td3
Pendulum-v0_4.0e-3_2.0e-2_td3
Pendulum-v0_6.3e-4_3.2e-3_td3

(c) Pendulum TD3

1 2 3 4 5 6 7
TotalEnvInteracts 1e5

1000

800

600

400

200

0

200

Pe
rfo

rm
an

ce

LunarLanderContinuous-v2_0.0e+1_0.0e+1_ddpg
LunarLanderContinuous-v2_1.0e+0_5.0e+0_ddpg
LunarLanderContinuous-v2_1.0e+1_5.0e+1_ddpg
LunarLanderContinuous-v2_1.0e-1_5.0e-1_ddpg
LunarLanderContinuous-v2_1.0e-2_5.0e-2_ddpg
LunarLanderContinuous-v2_1.0e-3_5.0e-3_ddpg
LunarLanderContinuous-v2_1.0e-4_5.0e-4_ddpg

(d) Lunar Lander DDPG

1 2 3 4 5 6 7
TotalEnvInteracts 1e5

600

400

200

0

200

400

Pe
rfo

rm
an

ce

LunarLanderContinuous-v2_0.0e+1_0.0e+1_sac
LunarLanderContinuous-v2_1.0e+0_5.0e+0_sac
LunarLanderContinuous-v2_1.0e+1_5.0e+1_sac
LunarLanderContinuous-v2_1.0e-1_5.0e-1_sac
LunarLanderContinuous-v2_1.0e-2_5.0e-2_sac
LunarLanderContinuous-v2_1.0e-3_5.0e-3_sac
LunarLanderContinuous-v2_1.0e-4_5.0e-4_sac

(e) Lunar Lander SAC

1 2 3 4 5 6 7
TotalEnvInteracts 1e5

800

600

400

200

0

200

Pe
rfo

rm
an

ce

LunarLanderContinuous-v2_0.0e+1_0.0e+1_td3
LunarLanderContinuous-v2_1.0e+0_5.0e+0_td3
LunarLanderContinuous-v2_1.0e+1_5.0e+1_td3
LunarLanderContinuous-v2_1.0e-1_5.0e-1_td3
LunarLanderContinuous-v2_1.0e-2_5.0e-2_td3
LunarLanderContinuous-v2_1.0e-3_5.0e-3_td3
LunarLanderContinuous-v2_1.0e-4_5.0e-4_td3

(f) Lunar Lander TD3

0.5 1.0 1.5 2.0 2.5 3.0 3.5
TotalEnvInteracts 1e5

3000

2500

2000

1500

1000

500

0

500

1000

Pe
rfo

rm
an

ce

Ant-v2_0.0e+1_0.0e+1_ddpg
Ant-v2_1.0e-1_5.0e-1_ddpg
Ant-v2_1.0e-2_5.0e-2_ddpg
Ant-v2_1.0e-3_5.0e-3_ddpg
Ant-v2_1.0e-4_5.0e-4_ddpg

(g) Ant DDPG

0.5 1.0 1.5 2.0 2.5 3.0 3.5
TotalEnvInteracts 1e5

0

1000

2000

3000

4000

5000

Pe
rfo

rm
an

ce

Ant-v2_0.0e+1_0.0e+1_sac
Ant-v2_1.0e-1_5.0e-1_sac
Ant-v2_1.0e-2_5.0e-2_sac
Ant-v2_1.0e-3_5.0e-3_sac
Ant-v2_1.0e-4_5.0e-4_sac

(h) Ant SAC

0.5 1.0 1.5 2.0 2.5 3.0 3.5
TotalEnvInteracts 1e5

0

1000

2000

3000

4000

Pe
rfo

rm
an

ce

Ant-v2_0.0e+1_0.0e+1_td3
Ant-v2_1.0e-1_5.0e-1_td3
Ant-v2_1.0e-2_5.0e-2_td3
Ant-v2_1.0e-3_5.0e-3_td3
Ant-v2_1.0e-4_5.0e-4_td3

(i) Ant TD3

0.5 1.0 1.5 2.0 2.5 3.0 3.5
TotalEnvInteracts 1e5

60

50

40

30

20

10

0

Pe
rfo

rm
an

ce

Reacher-v2_0.0e+1_0.0e+1_ddpg
Reacher-v2_1.0e+0_5.0e+0_ddpg
Reacher-v2_1.0e+1_5.0e+1_ddpg
Reacher-v2_1.0e+2_5.0e+2_ddpg
Reacher-v2_1.0e-1_5.0e-1_ddpg
Reacher-v2_1.0e-2_5.0e-2_ddpg
Reacher-v2_1.0e-3_5.0e-3_ddpg
Reacher-v2_1.0e-4_5.0e-4_ddpg

(j) Reacher DDPG

0.5 1.0 1.5 2.0 2.5 3.0 3.5
TotalEnvInteracts 1e5

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

Pe
rfo

rm
an

ce

Reacher-v2_0.0e+1_0.0e+1_sac
Reacher-v2_1.0e+0_5.0e+0_sac
Reacher-v2_1.0e+1_5.0e+1_sac
Reacher-v2_1.0e+2_5.0e+2_sac
Reacher-v2_1.0e-1_5.0e-1_sac
Reacher-v2_1.0e-2_5.0e-2_sac
Reacher-v2_1.0e-3_5.0e-3_sac
Reacher-v2_1.0e-4_5.0e-4_sac

(k) Reacher DDPG

0.5 1.0 1.5 2.0 2.5 3.0 3.5
TotalEnvInteracts 1e5

100

80

60

40

20

0

Pe
rfo

rm
an

ce

Reacher-v2_0.0e+1_0.0e+1_td3
Reacher-v2_1.0e+0_5.0e+0_td3
Reacher-v2_1.0e+1_5.0e+1_td3
Reacher-v2_1.0e+2_5.0e+2_td3
Reacher-v2_1.0e-1_5.0e-1_td3
Reacher-v2_1.0e-2_5.0e-2_td3
Reacher-v2_1.0e-3_5.0e-3_td3
Reacher-v2_1.0e-4_5.0e-4_td3

(l) Reacher DDPG

Figure 3: Comparing regularization with DDPG (left), SAC (middle), TD3 (left)

4

B.3 Vanilla Training vs. CAPS — Frequency Spectrum of Actions

0 5 10 15 20 25
Hz

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Reward: -828.46±381.09, Smooth (×103): 8.23+-4.34
Center of mass

PPO on Pendulum-v0 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Am
pl

itu
de

Reward: -590.36±278.65, Smooth (×103): 8.09+-2.13
Center of mass

PPO on Pendulum-v0 with a=1.0e-2 and s=5.0e-2

0 5 10 15 20 25
Hz

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Am
pl

itu
de

Reward: -145.56±10.65, Smooth (×103): 47.60+-35.98
Center of mass

DDPG on Pendulum-v0 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Am
pl

itu
de

Reward: -188.17±22.53, Smooth (×103): 7.09+-1.66
Center of mass

DDPG on Pendulum-v0 with a=1.0e+0 and s=5.0e+0

0 5 10 15 20 25
Hz

0.00

0.05

0.10

0.15

0.20

0.25

Am
pl

itu
de

Reward: -139.86±8.29, Smooth (×103): 9.32+-1.14
Center of mass

SAC on Pendulum-v0 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Am
pl

itu
de

Reward: -165.79±9.23, Smooth (×103): 4.93+-1.15
Center of mass

SAC on Pendulum-v0 with a=1.0e+0 and s=5.0e+0

0 5 10 15 20 25
Hz

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Am
pl

itu
de

Reward: -152.71±9.47, Smooth (×103): 43.91+-30.94
Center of mass

TD3 on Pendulum-v0 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

Reward: -172.82±13.47, Smooth (×103): 6.03+-1.52
Center of mass

TD3 on Pendulum-v0 with a=1.0e+0 and s=5.0e+0

Figure 4: Comparing FFTs for vanilla agents vs CAPS on Pendulum (note the scale of the amplitude
when comparing plots). Represented in dark-blue is the mean FFT while the variance is captured
in light-blue. We also show the center of mass (CoM) to demonstrate how the CoM moves as a
function of CAPS regularization.

5

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Am
pl

itu
de

Reward: 64.34±23.06, Smooth (×103): 11.37+-1.39
Center of mass

PPO on LunarLanderContinuous-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Am
pl

itu
de

Reward: 42.90±35.25, Smooth (×103): 8.85+-2.13
Center of mass

PPO on LunarLanderContinuous-v2 with a=1.0e-3 and s=5.0e-3

0 5 10 15 20 25
Hz

0.0

0.2

0.4

0.6

0.8

Am
pl

itu
de

Reward: 63.78±36.43, Smooth (×103): 34.00+-14.26
Center of mass

DDPG on LunarLanderContinuous-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Am
pl

itu
de

Reward: -58.82±219.42, Smooth (×103): 19.62+-6.84
Center of mass

DDPG on LunarLanderContinuous-v2 with a=1.0e-1 and s=5.0e-1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

Am
pl

itu
de

Reward: 86.33±11.52, Smooth (×103): 8.15+-0.90
Center of mass

SAC on LunarLanderContinuous-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

Am
pl

itu
de

Reward: 93.31±13.94, Smooth (×103): 7.35+-0.90
Center of mass

SAC on LunarLanderContinuous-v2 with a=1.0e-1 and s=5.0e-1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Am
pl

itu
de

Reward: 90.92±11.45, Smooth (×103): 33.55+-12.89
Center of mass

TD3 on LunarLanderContinuous-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Am
pl

itu
de

Reward: 86.96±47.62, Smooth (×103): 16.89+-4.81
Center of mass

TD3 on LunarLanderContinuous-v2 with a=1.0e-1 and s=5.0e-1

Figure 5: Comparing FFTs for vanilla agents vs CAPS on Lunar Lander (note the scale of the
amplitude when comparing plots). Represented in dark-blue is the mean FFT while the variance is
captured in light-blue. We also show the center of mass (CoM) to demonstrate how the CoM moves
as a function of CAPS regularization.

6

0 5 10 15 20 25
Hz

0.00

0.05

0.10

0.15

0.20

0.25

Am
pl

itu
de

Reward: 2729.11±719.57, Smooth (×103): 5.03+-1.44
Center of mass

PPO on Ant-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.00

0.02

0.04

0.06

0.08

0.10

Am
pl

itu
de

Reward: 2827.40±939.92, Smooth (×103): 1.67+-0.53
Center of mass

PPO on Ant-v2 with a=1.0e-1 and s=5.0e-1

0 5 10 15 20 25
Hz

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Reward: 222.48±612.57, Smooth (×103): 3.03+-1.83
Center of mass

DDPG on Ant-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Am
pl

itu
de

Reward: 253.30±50.29, Smooth (×103): 1.33+-0.71
Center of mass

DDPG on Ant-v2 with a=1.0e-1 and s=5.0e-1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

Am
pl

itu
de

Reward: 4203.55±911.75, Smooth (×103): 6.71+-2.40
Center of mass

SAC on Ant-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Am
pl

itu
de

Reward: 4135.03±809.34, Smooth (×103): 6.05+-3.08
Center of mass

SAC on Ant-v2 with a=1.0e-1 and s=5.0e-1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

Am
pl

itu
de

Reward: 3430.76±751.58, Smooth (×103): 7.39+-2.80
Center of mass

TD3 on Ant-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

0.5

Am
pl

itu
de

Reward: 3494.18±859.01, Smooth (×103): 7.22+-2.65
Center of mass

TD3 on Ant-v2 with a=1.0e-1 and s=5.0e-1

Figure 6: Comparing FFTs for vanilla agents vs CAPS on Ant (note the scale of the amplitude when
comparing plots). Represented in dark-blue is the mean FFT while the variance is captured in light-
blue. We also show the center of mass (CoM) to demonstrate how the CoM moves as a function of
CAPS regularization.

7

0 5 10 15 20 25
Hz

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Am
pl

itu
de

Reward: -5.16±0.64, Smooth (×103): 4.16+-0.76
Center of mass

PPO on Reacher-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Am
pl

itu
de

Reward: -4.85±0.46, Smooth (×103): 3.13+-0.51
Center of mass

PPO on Reacher-v2 with a=1.0e-1 and s=5.0e-1

0 5 10 15 20 25
Hz

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Am
pl

itu
de

Reward: -4.26±0.20, Smooth (×103): 4.28+-0.45
Center of mass

DDPG on Reacher-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Am
pl

itu
de

Reward: -5.03±1.89, Smooth (×103): 3.76+-1.14
Center of mass

DDPG on Reacher-v2 with a=1.0e-1 and s=5.0e-1

0 5 10 15 20 25
Hz

0.00

0.02

0.04

0.06

0.08

0.10

Am
pl

itu
de

Reward: -5.96±0.47, Smooth (×103): 5.99+-0.91
Center of mass

SAC on Reacher-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.00

0.02

0.04

0.06

0.08

0.10

Am
pl

itu
de

Reward: -6.25±0.37, Smooth (×103): 5.00+-0.70
Center of mass

SAC on Reacher-v2 with a=1.0e-1 and s=5.0e-1

0 5 10 15 20 25
Hz

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Am
pl

itu
de

Reward: -6.52±1.12, Smooth (×103): 5.70+-0.98
Center of mass

TD3 on Reacher-v2 with a=0.0e+1 and s=0.0e+1

0 5 10 15 20 25
Hz

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Am
pl

itu
de

Reward: -6.32±0.66, Smooth (×103): 4.63+-0.72
Center of mass

TD3 on Reacher-v2 with a=1.0e-1 and s=5.0e-1

Figure 7: Comparing FFTs for vanilla agents vs CAPS on Reacher (note the scale of the amplitude
when comparing plots). Represented in dark-blue is the mean FFT while the variance is captured
in light-blue. We also show the center of mass (CoM) to demonstrate how the CoM moves as a
function of CAPS regularization.

8

B.4 Frequency Response

We performed an analysis of each of the simulated environments’ frequency responses. To do this,
we analyzed the responses of different parts of the simulated control systems (example: joint ro-
tation) to actuation signals of different frequencies. Performing this analysis allowed us to get a
better sense for how much head-room was available for improving the smoothness of control in the
different environments.

We began by analyzing the simplest environment: Pendulum. By disabling simulated gravity, we
were able to analyze the responses of differently weighted pendulum masses. We see that with a
default mass of 1 unit, the responsiveness of the system is limited to low frequency control, with
higher frequency components have negligible impact on the system. As a sanity-test, we also an-
alyzed the responses of lighter pendulums. As we reduce the mass, we observe that the system’s
response to higher frequency actuation increases, as expected, as lower mass results in lower inertia.
We show this in Fig. 8. It can be concluded based on these results that high frequency actuation has
little value to the system and can be significantly reduced.

Similar to the pendulum, we observe that there is limited efficacy in high-frequency control for
the Lunar Lander as well as the shoulder for the Reacher. With environments like the Ant and
Reacher however, at least one of the the joints (or all the joints in the Ant’s case) maintain significant
responsiveness even at higher frequencies. Furthermore, the peak responsiveness is at a higher
frequency. This means that it is very explicitly in the agents’ best interests to operate at higher
frequencies to gain the best rewards. This is reflected in the regularization results too as agents do
not behave significantly more smoothly in terms of CoM frequencies. The CAPS agents in these
cases however are able to exploit what additional smoothness they do gain however for consistently
improved rewards.

0 5 10 15 20 25
Hz

0

2

4

6

8

10

12

14

Am
pl

itu
de

(a) mass=1

0 5 10 15 20 25
Hz

0

2

4

6

8

10

12

14

16

Am
pl

itu
de

(b) mass=0.1

0 5 10 15 20 25
Hz

0

2

4

6

8

10

12

14

16

Am
pl

itu
de

(c) mass=0.01

Figure 8: Figures 8a, 8b, and 8c show the response to torque applied on the single joint attached to
the pole with differing masses showcasing the effect it has on the system’s dynamics

0 5 10 15 20 25
Hz

0.0

0.1

0.2

0.3

0.4

Am
pl

itu
de

(a) Horizontal thruster

0 5 10 15 20 25
Hz

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

(b) Vertical thruster

Figure 9: Figures 9a, and 9b show the horizontal and vertical thruster responses to the horizontal
and vertical velocity respectively for LunarLanderContinuous-v2

9

0 5 10 15 20 25
Hz

0

50

100

150

200

250

300

Am
pl

itu
de

(a) Shoulder rotational rate

0 5 10 15 20 25
Hz

0

5

10

15

20

25

30

Am
pl

itu
de

(b) Elbow rotational rate

Figure 10: Figures 10a, and 10b show the response to torque applied on the shoulder and elbow for
Reacher-v2

0 5 10 15 20 25
Hz

0

2

4

6

8

10

Am
pl

itu
de

(a) Hip rotational rate

0 5 10 15 20 25
Hz

0

1

2

3

4

5

6

7

8
Am

pl
itu

de

(b) Ankle rotational rate

Figure 11: Figures 11a, and 11b show the response to torque applied on a single limb’s hip and ankle
for Ant-v2

10

C Quadrotor Drone

C.1 Training setup

While we utilize the general flight controller training pipeline developed by Koch [10], Koch et al.
[11], we made some alterations to facilitate simpler training and to further illustrated the benefits of
CAPS. Koch [10] developed a highly tuned reward signal, but they limited their training to just using
step inputs. We noted that the trained controller appeared to have been over-fit to this signal structure
and was not good at generalizing to different signal inputs, even in the same simulated environments
with the same system dynamics, as demonstrated in Fig. 12. We found that training instead with a
Perlin-noise-based signal [12] allowed for a better exploration of the state space during training and
allowed for faster and more stable convergence. This signal also more closely reflects inputs from a
pilot in real flight.

In addition to changing the target goal generation, we changed the rewards structure. For every
time-step there are two components:

1. A tracking error based signal, pe = ||φ − φ̄||4 where φ and φ̄ represent the current and
desired rates of angular velocity respectively

2. A motor thrust requirement pT = ||y − 0.35||, where y ∈ R4 is the current motor thrust
fractions. We use reward engineering to condition motor output to be maintained at ap-
proximately 35% for attitude control.

We cast these rewards as positive and bounded signals as p+(p) = min(1,max(0, 1 − p)) and
compose the final reward, r as:

r =
√

(p+(pe)) (p+(pT))

While just using p+(pe) can allow for the training of minimally flight-worthy agents, we discovered
that it was necessary to have the output levels increased to match the typical thrust required to
hover. The base neuroflight pipeline described by Koch et al. [11] includes a control mixer which
mixes thrust control with attitude control. While attitude is controllable with low motor actuation,
the true motor levels during flight were typically higher - minimally at hover thrust of 35%. By
conditioning the agents to learn with motor thrusts typically maintained around 35%, we ensured
that the simulated dynamics more closely matched true-flight dynamics.

C.2 Comparing Agents

100

0

100

Ro
ll

(d
eg

/s
) Desired

PID
Neuroflight
PPO+CAPS

0.00

0.25

0.50

0.75

1.00

PI
D

(%
)Motor 1

Motor 2
Motor 3
Motor 4

200

100

0

100

Pi
tc

h
(d

eg
/s

)

0.00

0.25

0.50

0.75

1.00

Ne
ur

of
lig

ht
 (%

)

0 2 4 6 8
Time (s)

100

0

100

200

Ya
w

(d
eg

/s
)

0 2 4 6 8
Time (s)

0.2

0.4

0.6

PP
O+

CA
PS

 (%
)

Figure 12: We compare the velocity tracking performance and simulated motor utilization for PID,
Neuroflight and PPO trained with CAPS. Note that while all three controllers behave similarly in
terms of tracking performance, PPO + CAPS is significantly smoother than the PPO agent trained
by Neuroflight, despite having the same architecture.

11

C.3 Training progress

200

60

25

10Tr
ac

ki
ng

 E
rro

r

0.35

0.40

M
ot

or
 O

ut
pu

t

0.00100

0.00125

0.00150

M
ot

or
 A

cc
el

er
at

io
n

0 200000 400000 600000 800000 1000000 1200000
Timesteps

0.4

0.6

0.8

1.0

Re
wa

rd
s

Total
Error
35% Output

Figure 13: Training progress of PPO + CAPS. Training is halted when the mean absolute tracking
error over roll, pitch and yaw falls below 10 deg/s in training, to prevent over-fitting. We also show
the average motor acceleration to show that CAPS regularization does indeed reduce the rate of
acceleration of the motors, consequently improving smoothness.

12

References
[1] Python noise library version 1.2.3. URL https://github.com/caseman/noise/tree/

bb32991ab97e90882d0e46e578060717c5b90dc5.

[2] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. International Conference on Learning
Representations, 2016.

[4] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. International Conference on Machine
Learning (ICML), 2018.

[5] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, pages 1587–1596, 2018.

[6] J. Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[7] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov. Openai baselines. https://github.com/openai/baselines,
2017.

[8] Openai gym rl zoo. URL https://github.com/araffin/rl-baselines-zoo/tree/
2777c0376b2e96f146993b5b85a94ebaa0ea0b37/hyperparams.

[9] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable
baselines, 2018.

[10] W. Koch. Flight controller synthesis via deep reinforcement learning, 2019.

[11] W. Koch, R. Mancuso, and A. Bestavros. Neuroflight: Next generation flight control firmware.
CoRR, abs/1901.06553, 2019. URL http://arxiv.org/abs/1901.06553.

[12] K. Perlin. An image synthesizer. In Proceedings of the 12th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’85, page 287–296, New York, NY,
USA, 1985. Association for Computing Machinery. ISBN 0897911660. doi:10.1145/325334.
325247. URL https://doi.org/10.1145/325334.325247.

13

https://github.com/caseman/noise/tree/bb32991ab97e90882d0e46e578060717c5b90dc5
https://github.com/caseman/noise/tree/bb32991ab97e90882d0e46e578060717c5b90dc5
https://github.com/openai/baselines
https://github.com/araffin/rl-baselines-zoo/tree/2777c0376b2e96f146993b5b85a94ebaa0ea0b37/hyperparams
https://github.com/araffin/rl-baselines-zoo/tree/2777c0376b2e96f146993b5b85a94ebaa0ea0b37/hyperparams
http://arxiv.org/abs/1901.06553
http://dx.doi.org/10.1145/325334.325247
http://dx.doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247

	Toy Environment
	Setup
	Filtering

	OpenAI Gym Benchmarks
	Setup — Algorithms & Basic Hyper-parameters
	Choosing CAPS Regularization Weights
	Vanilla Training vs. CAPS — Frequency Spectrum of Actions
	Frequency Response

	Quadrotor Drone
	Training setup
	Comparing Agents
	Training progress

