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A Toy Environment

A.1 Setup

The code for the toy environment and corresponding training is provided in the zip folder included
with this submission and, in the case of the paper’s acceptance, will be made public through github.
The simple toy environment is constructed as follows:

• State space: At time, t, the agent has a required goal, gt ∈ [−10, 10], and a current
state, ot ∈ [−10, 10]. These are stored internally. The state observation returned to the
agent is a 1D error, st = gt − ot.

• Goal generation: Goals are procedurally generated where gt is the result of a function
mapping g(t)→ [−10, 10]. Available goal generators include: [simplex[1], constant, step]

• Action Space: Actions are limited to the range of at ∈ [−1, 1].

• System Dynamics: The new state in response to action, at is computed as
ot+1 = clip(ot + at,−10, 10).

• Reward: Reward is computed as rt = −|gt − ot+1|.

• Ideal solution: This task could be easily solved by acting proportionally to st, with the
ideal response being at = clip(st,−1, 1).



A.2 Filtering

St
at

e
Unfiltered Butterworth (3rd order) Median (5th order) FIR (11th order) EMA ( = 0.6)

Time

0

Ac
tio

n

Time Time Time Time

Figure 1: Filtering on the behavior of an agent that is not smooth. In our main paper, we showed
that filtering on a well trained agent can result in poor tracking performance. Here we show that
filtering a functional, but poorly trained agent — evidenced by a rudimentary ability of the agent to
track the signal when unfiltered — can result in a catastrophic loss of control if filters are tuned for
a controller that works well. With the lack of reproducibility in vanilla RL, this could result in two
similarly trained agents behaving remarkably differently when filtered if filters are not individually
tuned, adding to the difficulty of reproduction of functional control.
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Figure 2: Filtering used on the smooth agents shown in the main paper applied to the PID controller
on which they were tuned. Note that we do not observe any similar adverse effects of filtering with
any of these filters that we demonstrated in Fig. 3 of the main paper. We tuned the filters for critical
damping on the PID controller. The cut-off frequency and filter order were chosen to minimize
overshoot and lag.
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B OpenAI Gym Benchmarks

B.1 Setup — Algorithms & Basic Hyper-parameters

We used 4 algorithms in our tests: PPO [2], DDPG [3], SAC [4], and TD3 [5]. For all the algo-
rithms except PPO, we used the implementations provided by OpenAI’s Spinning Up code-base [6].
For PPO, we used the implementation provided by OpenAI Baselines [7] as the Spinning up imple-
mentation omitted the running mean and standard deviation estimation for simplicity, but this does
inherently change the behavior of the algorithms. For consistency and reproducibility. the hyper-
parameters used for each environment/algorithm were copied from the RL zoo[8], provided by the
stable baselines library [9].

We used the following 4 training environments in our experiments:
We used Pendulum-v0 (Pendulum), LunlarLanderContinuous-v2 (Lunar Lander), Ant-v2 (Ant), and
Reacher-v2 (Reacher).

The code training with CAPS is provided in the zip folder included with this submission and, in the
case of the paper’s acceptance, will be made public through github.

B.2 Choosing CAPS Regularization Weights

In order to choose the regularization parameters for CAPS, we compared unregularized agents to
CAPS-regularized agents each trained with at least 11 random seeds and different regularization
values. We then selected regularization that consistently yielded the best tradeoff of smoothness
and performance on rewards. Training plots are shown in Fig. 4. These figures do not however
show results for PPO as it was not based on the Spinup [6] code-base and was incompatible with
the visualization tools, however we followed a similar procedure for determining good agents, only
based on console outputs instead of graphs.

We settled on the following regularization weights, λT and λS for each environment:

• Pendulum
– PPO: λT = 1.0e− 2, λS = 5.0e− 2

– others: λT = 1, λS = 5

• Lunar Lander
– PPO: λT = 1.0e− 3, λS = 5.0e− 3

– Others: λT = 1.0e− 1, λS = 5.0e− 1

• Reacher, Ant: λT = 1.0e− 1, λS = 5.0e− 1
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(a) Pendulum DDPG
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(b) Pendulum SAC
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(c) Pendulum TD3

1 2 3 4 5 6 7
TotalEnvInteracts 1e5

1000

800

600

400

200

0

200

Pe
rfo

rm
an

ce

LunarLanderContinuous-v2_0.0e+1_0.0e+1_ddpg
LunarLanderContinuous-v2_1.0e+0_5.0e+0_ddpg
LunarLanderContinuous-v2_1.0e+1_5.0e+1_ddpg
LunarLanderContinuous-v2_1.0e-1_5.0e-1_ddpg
LunarLanderContinuous-v2_1.0e-2_5.0e-2_ddpg
LunarLanderContinuous-v2_1.0e-3_5.0e-3_ddpg
LunarLanderContinuous-v2_1.0e-4_5.0e-4_ddpg

(d) Lunar Lander DDPG
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(e) Lunar Lander SAC
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(f) Lunar Lander TD3
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(g) Ant DDPG
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(h) Ant SAC
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(i) Ant TD3
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(j) Reacher DDPG
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(k) Reacher DDPG
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Figure 3: Comparing regularization with DDPG (left), SAC (middle), TD3 (left)
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B.3 Vanilla Training vs. CAPS — Frequency Spectrum of Actions
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Figure 4: Comparing FFTs for vanilla agents vs CAPS on Pendulum (note the scale of the amplitude
when comparing plots). Represented in dark-blue is the mean FFT while the variance is captured
in light-blue. We also show the center of mass (CoM) to demonstrate how the CoM moves as a
function of CAPS regularization.
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Figure 5: Comparing FFTs for vanilla agents vs CAPS on Lunar Lander (note the scale of the
amplitude when comparing plots). Represented in dark-blue is the mean FFT while the variance is
captured in light-blue. We also show the center of mass (CoM) to demonstrate how the CoM moves
as a function of CAPS regularization.
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Figure 6: Comparing FFTs for vanilla agents vs CAPS on Ant (note the scale of the amplitude when
comparing plots). Represented in dark-blue is the mean FFT while the variance is captured in light-
blue. We also show the center of mass (CoM) to demonstrate how the CoM moves as a function of
CAPS regularization.
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Figure 7: Comparing FFTs for vanilla agents vs CAPS on Reacher (note the scale of the amplitude
when comparing plots). Represented in dark-blue is the mean FFT while the variance is captured
in light-blue. We also show the center of mass (CoM) to demonstrate how the CoM moves as a
function of CAPS regularization.
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B.4 Frequency Response

We performed an analysis of each of the simulated environments’ frequency responses. To do this,
we analyzed the responses of different parts of the simulated control systems (example: joint ro-
tation) to actuation signals of different frequencies. Performing this analysis allowed us to get a
better sense for how much head-room was available for improving the smoothness of control in the
different environments.

We began by analyzing the simplest environment: Pendulum. By disabling simulated gravity, we
were able to analyze the responses of differently weighted pendulum masses. We see that with a
default mass of 1 unit, the responsiveness of the system is limited to low frequency control, with
higher frequency components have negligible impact on the system. As a sanity-test, we also an-
alyzed the responses of lighter pendulums. As we reduce the mass, we observe that the system’s
response to higher frequency actuation increases, as expected, as lower mass results in lower inertia.
We show this in Fig. 8. It can be concluded based on these results that high frequency actuation has
little value to the system and can be significantly reduced.

Similar to the pendulum, we observe that there is limited efficacy in high-frequency control for
the Lunar Lander as well as the shoulder for the Reacher. With environments like the Ant and
Reacher however, at least one of the the joints (or all the joints in the Ant’s case) maintain significant
responsiveness even at higher frequencies. Furthermore, the peak responsiveness is at a higher
frequency. This means that it is very explicitly in the agents’ best interests to operate at higher
frequencies to gain the best rewards. This is reflected in the regularization results too as agents do
not behave significantly more smoothly in terms of CoM frequencies. The CAPS agents in these
cases however are able to exploit what additional smoothness they do gain however for consistently
improved rewards.
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Figure 8: Figures 8a, 8b, and 8c show the response to torque applied on the single joint attached to
the pole with differing masses showcasing the effect it has on the system’s dynamics
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Figure 9: Figures 9a, and 9b show the horizontal and vertical thruster responses to the horizontal
and vertical velocity respectively for LunarLanderContinuous-v2
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Figure 10: Figures 10a, and 10b show the response to torque applied on the shoulder and elbow for
Reacher-v2
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Figure 11: Figures 11a, and 11b show the response to torque applied on a single limb’s hip and ankle
for Ant-v2
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C Quadrotor Drone

C.1 Training setup

While we utilize the general flight controller training pipeline developed by Koch [10], Koch et al.
[11], we made some alterations to facilitate simpler training and to further illustrated the benefits of
CAPS. Koch [10] developed a highly tuned reward signal, but they limited their training to just using
step inputs. We noted that the trained controller appeared to have been over-fit to this signal structure
and was not good at generalizing to different signal inputs, even in the same simulated environments
with the same system dynamics, as demonstrated in Fig. 12. We found that training instead with a
Perlin-noise-based signal [12] allowed for a better exploration of the state space during training and
allowed for faster and more stable convergence. This signal also more closely reflects inputs from a
pilot in real flight.

In addition to changing the target goal generation, we changed the rewards structure. For every
time-step there are two components:

1. A tracking error based signal, pe = ||φ − φ̄||4 where φ and φ̄ represent the current and
desired rates of angular velocity respectively

2. A motor thrust requirement pT = ||y − 0.35||, where y ∈ R4 is the current motor thrust
fractions. We use reward engineering to condition motor output to be maintained at ap-
proximately 35% for attitude control.

We cast these rewards as positive and bounded signals as p+(p) = min(1,max(0, 1 − p)) and
compose the final reward, r as:

r =
√

(p+(pe)) (p+(pT ))

While just using p+(pe) can allow for the training of minimally flight-worthy agents, we discovered
that it was necessary to have the output levels increased to match the typical thrust required to
hover. The base neuroflight pipeline described by Koch et al. [11] includes a control mixer which
mixes thrust control with attitude control. While attitude is controllable with low motor actuation,
the true motor levels during flight were typically higher - minimally at hover thrust of 35%. By
conditioning the agents to learn with motor thrusts typically maintained around 35%, we ensured
that the simulated dynamics more closely matched true-flight dynamics.

C.2 Comparing Agents
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Figure 12: We compare the velocity tracking performance and simulated motor utilization for PID,
Neuroflight and PPO trained with CAPS. Note that while all three controllers behave similarly in
terms of tracking performance, PPO + CAPS is significantly smoother than the PPO agent trained
by Neuroflight, despite having the same architecture.
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C.3 Training progress
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Figure 13: Training progress of PPO + CAPS. Training is halted when the mean absolute tracking
error over roll, pitch and yaw falls below 10 deg/s in training, to prevent over-fitting. We also show
the average motor acceleration to show that CAPS regularization does indeed reduce the rate of
acceleration of the motors, consequently improving smoothness.
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