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Abstract—Actors and critics in actor-critic reinforcement
learning algorithms are functionally separate, yet they often use
the same network architectures. This case study explores the
performance impact of network sizes when considering actor and
critic architectures independently. By relaxing the assumption of
architectural symmetry, it is often possible for smaller actors
to achieve comparable policy performance to their symmetric
counterparts. Our experiments show up to 99% reduction in
the number of network weights with an average reduction of
77% over multiple actor-critic algorithms on 9 independent tasks.
Given that reducing actor complexity results in a direct reduction
of run-time inference cost, we believe configurations of actors
and critics are aspects of actor-critic design that deserve to be
considered independently, particularly in resource-constrained
applications or when deploying multiple actors simultaneously.

Index Terms—Reinforcement Learning, Artificial Intelligence,
Actor-Critic Asymmetry, Case Study

I. INTRODUCTION

As a tool for developing machine learning (ML) based
artificial intelligence (AI) for games, deep reinforcement
learning (RL) has received increased interest in recent years.
RL has been used to develop game-play AI ranging from
human-like [1]–[3] to superhuman [4], [5], with a wide array
of applications, including game testing [1]–[3], competition
against human players [4], [5], and simply as a means to
develop more diverse styles of in-game play [2]. While RL can
enable learning models for interesting behavior, the models can
be significantly more computationally expensive than classical
controllers or heuristic-based algorithms, particularly if models
need to be deployed at scale (e.g. when controlling multiple
in-game characters). In exploring how changing model com-
plexity affects learning performance, we discovered that, for a
class of RL algorithms, actor-critic RL, the size and run-time
cost of learned actors could often be significantly reduced,
while preserving performance parity with larger networks.

RL algorithms typically attempt to train control policies
that maximize expected rewards on a given task, where the
action-to-reward relationship is treated as a black-box. Since
a function that maps actions to rewards is not known a
priori, a value function is learned to estimate it and is in
turn used to optimize the policy to maximize rewards. Actor-
critic methods are currently amongst the most common class
of model-free deep reinforcement learning (RL) algorithms.
They are characterized by their separation of the functions
representing the actor — the RL policy — and the critic — the
value function estimator. This allows actor-critic methods to
theoretically take advantage of the improved sample efficiency
of value-based RL approaches like Q-learning [6] while also
capitalizing on the ability to use policy-based approaches such
as policy gradient [7], enabling learning on continuous action
domains and improved robustness to stochasticity.

The separation of actors and critics means that only the
actor is required during inference, which saves the run-time
cost of estimating policy value, as it is mainly useful only
during training. Beyond excluding the critic, further reducing
run-time compute requires reducing actor sizes, leading us to
ask how small actors can get before losing learning efficacy.
We noted that works considering the impact of network
architectures on RL performance typically adjust both actor
and critic sizes equivalently [8]–[12], i.e. their architectures
are kept ‘symmetric’. We also see this implicit assumption in
game-development tools such as Unity’s ML-agents API [13].
Nonetheless, nothing in the theoretical foundations precludes
using different architectures for actors and critics. In this work,
we study if symmetry is important to actor-critic methods and
how relaxing the self-imposed symmetry impacts performance
and model complexity. We find this actor-critic architectural
‘asymmetry’ allows for a significant reduction in actor network
sizes without compromising the algorithms’ performances.



We hypothesize that modeling the value function associated
with an environment often requires a higher capacity for
modeling complexity. This is because the critic needs to
develop an understanding of both the dynamics of a black-box
system and how they contribute to learning rewards. Actors
try to maximize the value estimate, which is done by gradient
ascent on the value function estimate. Evidence suggests this
is often easier to optimize, requiring less modeling complexity,
allowing for smaller actors. We test 4 popular actor-critic
algorithms on 9 different environments of varying system
dynamics and complexity. We show that it is not simply
that network architectures often presented in contemporary
literature have a lot of headroom with model complexity
but that actors often require less modeling capacity than
critics, allowing them to function with smaller architectures.
The practical implications of this intuitive observation have
received little attention, both in the game AI and broader
ML communities, and no prior study has been conducted to
systematically understand and evaluate the potential of this
architectural asymmetry in actor-critic methods. Our results
show that architectural asymmetry enables reductions in actor
sizes in excess of 98% even over actors that have already been
shrunk through symmetric architecture tuning, with an average
reduction of 77% in model parameters.

II. PRELIMINARIES

Actor-critic methods separate the actor and critic functions
of an RL algorithm. The actor function represents the pol-
icy, i.e. the core of the decision making aspect of the RL
algorithm, while the critic estimates the value of trajectories
of state transitions under the policy. Actor-critic algorithms
are typically trained through sampling-based value iteration
and policy gradients, where critics are trained to minimize
the loss on the measured returns against the estimated value
and actors are trained to maximize the estimated value of
the trajectories generated under the actor policy. Specifics of
how the optimization criteria are estimated vary between algo-
rithms. Prominent contemporary algorithms include A2C [14],
A3C [15], PPO [16], TRPO [17], DDPG [18], TD3 [19], and
SAC [20], to name a few.

Network architecture is one of many hyper-parameters that
can impact actor-critic performance [9], [11], [21]–[24], but
actors and critics are rarely considered separately. We believe,
however, that this is an important consideration to make, but
one that is easily missed given that tools most commonly
available typically hard-code actor/critic symmetry. Actor-
critic algorithms are widely represented in common baselines
and benchmarks, but when surveying existing baseline codes
including OpenAI Baselines [25], OpenAI Spinning Up [26],
Stable Baselines (v2 and v3) [27], [28], Unity ML-agents [13],
Tensorflow RL Agents [29], and rllab [12], we found that
actor and critic architectures are generally entangled and
symmetric — in most cases allowing users to define an
architecture for both the actor and critic networks together
but not independently. There are, of course, many aspects
of network architecture to consider, including input handling,

layer sizes, network depths, recurrence, information sharing
between nodes, etc. For the purposes of this study, and in the
interest of not diluting the focus on variables, we focused on
layer sizes while keeping all other parameters fixed as per
values found in benchmarks for 2-hidden-layer networks.

III. LITMUS TEST: A TOY PROBLEM

We start with a toy-problem that we know could be solved,
in principle, by a very small, linear (1-neuron) actor. We
constructed a simple one-dimensional goal-tracking problem
without complex dynamics or system noise (details in Ap-
pendix A). The agent’s observed state o is the difference
between the desired goal g and current internal state s,
o = g − s, where s, g ∈ [−1, 1]. Actions a affect the internal
state such that the next state s′ = s + a, while the observed
reward r = −|g − s′|. This problem is solved with the ideal
policy a∗ = o, which can be represented by a single neuron.

We considered every algorithm included in the Ope-
nAI Spinning Up code-base [26], which includes TRPO, PPO,
DDPG, SAC and TD3. The code-base, by default, allows
users to jointly adjust the number of hidden layers and the
number of hidden neurons per layer in the actor and critic
networks. For all algorithms tested however, when trained with
the implicit assumption of actor and critic network symmetry,
it was not possible for agents to learn to solve even this simple
problem with a 1-neuron policy. We will note however that it is
possible for the single neuron weight to be randomly initialized
close to 1, which effectively solves the problem, though
does not count as a ‘learned’ solution. We tested network
architectures including |1|, |4, 4, 1|, |8, 8, 1| and |16, 16, 1|,
where numbers within the vertical brackets provide a comma-
delimited representation of the number of neurons per layer in
the neural network, with the last layer being the 1-D output.
When structured symmetrically, we found that agents did not
consistently train to solve this problem for networks smaller
than |8, 8, 1|, but were most stable with |16, 16, 1|. Fig. 1
shows training trends for each of the algorithms trained on this
problem while Fig. 2 compares the quality of learned control.

Note that a linear 1-neuron actor policy is not capable
of learning to solve this problem when paired with a 1-
neuron critic, but learns viable policies when trained with
a larger critic. Trends in rewards and losses during training
indicated that an improvement in value estimation was fol-
lowed shortly thereafter by an improvement in the observed
rewards. Based on this observation, we hypothesized that
it was the smaller critics that were lacking in their ability
to model the underlying value functions. To test this, we
restricted the actor size to be 1-neuron and set the critic
to be |16, 16, 1|. By breaking from the implicit assumption
of actor-critic symmetry and separately considering the actor
and critic architecture, it was possible to consistently train 1-
neuron actors where the smaller symmetrically sized 1-neuron
critics had failed. Figs. 1 and 2 demonstrate that, in addition to
allowing for successful training, the asymmetric models share
similar training and loss optimization characteristics to their
larger symmetric counterparts.



Fig. 1. Comparison of how rewards and value (critic) losses evolve during training on a simple toy-problem. Results suggest a strong correlation between
critic size and policy viability. Symmetric policies share the same size as their critics while the asymmetric actor has a 1-neuron policy and a |16, 16, 1|
critic. Note that the asymmetric actors performs very similarly to the symmetric |16, 16, 1| policies and share similar value loss profiles too.

Fig. 2. Representative samples of DDPG behavior for different actor “a” and critic “c” sizes. This visualizes the ability of differently configured agents, or
lack thereof, to solve the simple toy problem described in Section III. We compare both the state response over a 1.5s window, as well as a 2-D histogram of
state-action response for the sampled agents over the valid state and action space. The green dotted line in the state-action plots represents the ideal action
policy, i.e. a = o. Note that only the asymmetric linear actor (right) is able to learn a near-ideal policy, while its symmetric counterpart simply fails to learn
and larger networks learn more (needlessly) complex policies. Crucially, this shows that, with sufficient modeling capacity in the critic, a single neuron indeed
learns to solve this simple problem, while an assumption of actor-critic symmetry would not allow for this.

IV. ARCHITECTURAL-ASYMMETRY BENCHMARKED

It was evident that separately defining actor and critic
architectures was at least helpful in the case of a simple toy
problem. To better understand the practical implications of
actor-critic asymmetry, we evaluated how different network
sizes affect performance on a number of common benchmark
tasks from OpenAI’s Gym [30] benchmark environments, in
addition to games from the Pygame Learning Environment
(PLE) [31] and Unity’s ML-agents [13] example training
environments.

To better characterize how network size can affect perfor-
mance, and specifically how smaller networks impact perfor-
mance, we consider two aspects of the actor-critic architecture:
(i) the smallest symmetric actor-critic architecture that can
meaningfully solve the problem, and similarly (ii) the smallest

asymmetric architecture with comparable performance. Treat-
ing |400, 300| (the DDPG and TD3 default) as the upper bound
on a set of possible 2-hidden-layer architectures, we con-
sider the hidden-layer structures: |1, 1|, |4, 4|, |8, 8|, |16, 16|,
|32, 32|, |64, 64|, |128, 128|, |256, 256| and |400, 300| (note
that these do not include the output layer, which is defined with
respect to the action space for each test environment). This
list covers typical architectures found in actor-critic literature
but also goes smaller to get a sense the lower bound on the
network complexity needed for the considered tasks.

Experimental Method: We determine appropriate sizes for
the smallest symmetric and asymmetric architectures sequen-
tially. By running the algorithms on 6 random seeds with
their originally reported architectures, we establish a baseline
and a threshold target performance for smaller networks. We
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Fig. 3. Environments used to benchmark various actor-critic algorithms. Environments were chosen to cover a diverse set of dynamics and objectives.

then use this threshold, with a 10% tolerance on the lower-
bound, to perform a binary search over the actor-critic network
sizes to find the smallest one that can solve the problem
while preserving actor-critic symmetry, similarly averaging
performance over 6 seeds. Finally, by locking the critic ar-
chitecture to the smallest symmetric size found, we repeat the
binary search over the possible actor architectures to find the
smallest asymmetric actor that would solve the problem. This
allows us to determine more conclusively that, in cases where
asymmetry allows for actor size reduction, it is not simply
attributable to excess modeling capacity in both the actor and
critic networks when using baseline network architectures.

Learning Tasks: In an effort to cover a wide range of
possible system dynamics, we experimented with 8 differ-
ent training environments (Fig. 3). From the Gym bench-
marks, we tested controls tasks of varying levels of com-
plexity: Pendulum-v0, Reacher-v2, Ant-v2, HalfCheetah-v2
and Acrobot-v1. Agents have control over various actuators
and use information observed about joint dynamics to control
joint actuation. From PLE, we tested an implementation of
Pong, where the RL agent competes against a heuristic-based
opponent AI, as well as Pixelcopter, an obstacle-avoidance
side-scroller. For both the PLE games, the agents directly ob-
serve relevant game-state information such as player position,
obstacle/ball positions, player speed, etc. instead of relying on
more complex information structures such as the video frame
buffer or RAM state as found in some game benchmarks —
this was a deliberate choice to better reflect how an RL agent
might more likely be practically implemented to play these
games. Finally, we experimented with the Food Collector game
from Unity ML-agents (release 14) set of example training
environments, where the agent observes information about the
game-state in a local region around its position and is tasked
with collecting objective mobile markers using a designated
capture action, while avoiding mobile obstacles. This game

was chosen specifically as its construction bears relevance to
a wide variety of objective-capture type games. While other
games from the ML-agents examples were considered, we
opted against using any that employed self-play in training
to avoid behavioral artefacts that could arise and felt that the
other environments did not offer significantly more represen-
tative value, given the controls tasks and games already tested.

Algorithms Tested: For the continuous control tasks, we
tested 4 algorithms: DDPG [18], TD3 [19], SAC [20] and
PPO [16]. With the exception of PPO, we used codes provided
by the OpenAI Spinning Up [26] code-base, with training
hyper-parameters from the RL-zoo [27]. As shown by En-
gstrom et al. [32] and Ilyas et al. [33] PPO can be highly
sensitive to implementation details, so we instead used the
OpenAI Baselines [25] implementation of PPO to maintain
parity with the original work. For the discrete action-space
environments (Acrobot, Pong and Pixelcopter), DDPG and
TD3 were not tested as they are designed specifically for
continuous control. For Unity’s Food Collector, we utilized the
ML-agents implementations of SAC and PPO as adapting the
Spinning Up codes to work with the API proved non-trivial.

Results: Our results are shown in Table I, with a visual
contextualization of the relative performances of symmetri-
cally and asymmetrically constructed actors shown in Fig. 4.
Asymmetry has demonstrable utility in reducing actor sizes in
every environment tested, though not necessarily with every
algorithm in each environment. We would also note that,
though it is possible for the automated search to find actors
larger than their critics, such a case did not arise in testing.
Network size reductions vary by algorithm and environment,
with between 70–97% actor size reductions, and with the Q-
learning based algorithms (DDPG, TD3 and SAC) sharing
similar trends. Network sizes are computed per task to account
for the different state and action dimensions (see Appendix B
for full weight-counts for each task).



TABLE I
EXPLORING THE IMPACT OF ACTOR-CRITIC ASYMMETRY ON ALGORITHM PERFORMANCE (IMPROVEMENTS IN SIZE ARE IN bold)

Algorithm Threshold Baseline Symmetric Actor Asymmetric Actor
Size Reward Size ↓ Reward ↑ Actor Size ↓ Reduction ↑ Critic Size Reward ↑

Gym Pendulum-v0
DDPG -160 |400, 300| −145.56± 10.64 |16, 16| −150.28± 9.08 |4,4| 88.38% |16, 16| −158.97± 5.33
TD3 -160 |400, 300| −152.71± 9.47 |16, 16| −152.42± 6.65 |4,4| 88.38% |16, 16| −167.57± 14.53
SAC -160 |256, 256| −139.86± 8.29 |16, 16| −155.32± 11.25 |4,4| 88.38% |16, 16| −153.86± 10.97
PPO -200 |64, 64| −668.60± 551.85 |128, 128| −193.55± 40.14 |128, 128| 0% |128, 128| −193.55± 40.14

Gym Reacher-v2
DDPG -5.0 |400, 300| −4.26± 0.25 |64, 64| −4.75± 0.19 |8,8| 96.33% |64, 64| −4.80± 0.44
TD3 -7.0 |400, 300| −6.52± 1.12 |64, 64| −6.91± 0.74 |32,32| 70.23% |64, 64| −6.68± 1.21
SAC -6.5 |256, 256| −5.96± 0.47 |128, 128| −6.05± 0.91 |16,16| 97.28% |128, 128| −6.02± 1.07
PPO -5.5 |64, 64| −4.37± 1.74 |64, 64| −4.37± 1.74 |16,16| 90.15% |64, 64| −5.49± 1.00

Gym HalfCheetah-v2
DDPG 7000 |400, 300| 7026.01± 202.78 |64, 64| 7450.01± 950.15 |32,32| 68.01% |64, 64| 8273.76± 437.66
TD3 8000 |400, 300| 8861.92± 870.02 |64, 64| 8315.13± 262.78 |32,32| 68.01% |64, 64| 8145.84± 262.55
SAC 10000 |256, 256| 11554.76± 779.91 |64, 64| 10180± 759.10 |32,32| 68.01% |64, 64| 9619± 158.40
PPO 3000 |64, 64| 3395± 1156.30 |64, 64| 3395± 1156.30 |32,32| 68.01% |64, 64| 3089± 919.25

Gym Ant-v2
DDPGa – |400, 300| 225.23± 362.88 – – – – –

TD3 3000 |400, 300| 3087.86± 888.75 |256, 256| 3944.78± 745.48 |32,32| 94.92% |256, 256| 3553.52± 396.30
SAC 3000 |256, 256| 3366.07± 1522.45 |64, 64| 3108.63± 519.59 |64, 64| 0% |64, 64| 3108.63± 519.59
PPO 3000 |64, 64| 3734.58± 988.29 |8, 8| 3723.57± 760.94 |8, 8| 0% |8, 8| 3723.57± 760.94

Gym Acrobot-v1
SACb -100 |256, 256| −76.5± 4.30 |32, 32| −86.5± 7.54 |16,16| 68.46% |32, 32| −90.5± 8.12
PPOb -100 |64, 64| −74.7± 0.30 |8, 8| −70.75± 0.33 |1,1| 90.33% |8, 8| −71.75± 0.50

PLE Pong
SACb 0.90 |256, 256| 0.93± 0.05 |64, 64| 0.90± 0.06 |16,16| 90.73% |64, 64| 0.89± 0.03
PPOb 0.80 |64, 64| 0.85± 0.13 |64, 64| 0.85± 0.13 |4,4| 98.62% |64, 64| 0.83± 0.09

PLE Pixelcopter
SACb 35 |256, 256| 36.83± 9.65 |64, 64| 33.87± 5.80 |8,8| 96.79% |64, 64| 35.98± 4.93
PPOb 20 |64, 64| 22.24± 9.86 |64, 64| 22.24± 9.86 |32,32| 71.30% |64, 64| 19.91± 10.03

Unity ML-agents Food Collector
SACc,d 60 |128, 128|e 61.77± 6.16 |32, 32| 65.22± 8.26 |8,8| 81.48% |32, 32| 60.31± 5.49
PPOc 50 |128, 128|e 50.25± 2.01 |128, 128| 50.25± 2.01 |32,32| 87.82% |128, 128| 48.05± 3.12

aDue to DDPG being incapable of reasonably solving the Ant task in our experiments, it is omitted for the Ant-v2 environment.
bOpenAI Spinning up implementation of algorithm is adjusted to support discrete action spaces.
cUnity ML-agents implementation of algorithm is used to preserve compatibility with recommended baseline configuration.
dDue to the instability of ML-agent’s implementation of SAC’s training on Food Collector, we report the average maximum reward achieved during training.
eWe use as a baseline the sizes recommended by the ML-agents baseline configuration parameters.

Fig. 4. Visual representation of the relative network size reductions and rewards presented in Table I. Network sizes are computed per task (see Appendix B).
Results evidence that it is often possible to train significantly smaller actors with larger critics without compromising performance by breaking implicit
assumptions of network architectural symmetry between actors and critics.



(a) [i] (a) [ii] (b)

Fig. 5. Training progress for SAC on Reacher-v2: (a) Q-Vlaue Loss during training and (b) the episodic returns. (a)[i] Shows the value loss during training
for different critic sizes while (a)[ii] shows the same for different actors trained with the same critic size. Changing the critic’s size impacts value-loss more
than changing the actor’s, suggesting that the critic is more sensitive to changes in modeling capacity.

PPO appears to be more unpredictable in performance,
particularly when considering the disparities in network size
to performance over Pendulum-v0, Ant-v2 and Acrobot-v1.
Despite poor performance on the simple inverted pendulum
problem with smaller networks where other algorithms suc-
ceed, PPO solves the more complicated multi-pedal locomo-
tion problem in Ant-v2 with significantly smaller actor and
critic networks compared to the other algorithms tested and is
similarly able to solve the Acrobot-v1 problem with smaller
networks than SAC. It does however allow actor size reduction
through asymmetry in most of the tested environments.

Experimental observations on these more complex environ-
ments also provide further empirical validation of our hypoth-
esis that modeling capacity in the critic is often the limiting
factor in achieving successful training. This is best illustrated
by data on the training of SAC on the Reacher-v2 task and is
shown in Fig. 5 where, much like in Fig. 1, there are relatively
clear demarcations in where the Q-value losses and episodic
rewards saturate for different network sizes. While changing
the size of the critic during the symmetric binary search has a
noticeable impact on the Q-value loss, changing the actor size
during asymmetric search does not impact the Q-value loss
significantly, as shown when comparing Figures 5(a)[i] and
[ii]. A larger critic also allows for a much smaller actor to be
successfully trained (in this case a critic with hidden layers
of size |128, 128| allows for an actor of size |16, 16|). We
can therefore draw the conclusion that the dominant limiting
factor in learning, for this algorithm, on this environment, is
indeed the modeling capacity of the critic. Similar trends were
observed for other algorithms in other training tasks too.

Our project website: http://ai.bu.edu/littleActor/ provides ac-
cess to view full training data for the experiments summarized
in Table I and Figs. 4 and 5, in addition to training code used.

V. REFLECTION AND RECOMMENDATIONS

The main goal of this work was to draw attention the the
practical benefits of separately considering actor and critic
architectures in RL-based AI, and experiments over a wide
array of tasks show that large reductions in actor-network sizes
are often possible. Furthermore, these reductions come without

incurring significant degradation in performance (capped here
to 10%) — and crucially, the tasks are still solved. We do
recognize that, on the scale of typical ‘large’ neural network
models, the architectures considered in this paper could all be
considered relatively small. However, with applications such
as games, where running the game AI is just one of many
compute tasks that need to be managed on machines with
varying resources budgets and where it may be necessary to
deploy multiple independent AIs simultaneously, we believe
that network size can be an important optimization consid-
eration. Reducing actor network sizes was also observed to
have some benefit in reducing training time — presenting
with up to 50% reduction in training time — though these
were inconsistent due to the impact of other tasks running
concurrently on the training machines.

While we made efforts to thoroughly explore one aspect of
network architectures, i.e. the network size, as the network
size is typically the largest contributor to compute cost, this
should not be regarded as an exhaustive study of the impact
of network architectures. There are still more aspects such
as depth, output activation, network initialization, etc., and as
shown by Henderson et al. [21] and Andrychowicz et al. [23],
those can strongly contribute to policy performance. The key
take-aways are that these aspects of network design bear
serious consideration when developing AI for deployment,
and while our analysis has been focused on network size, we
suspect that it would be worth considering other architectural
design choices separately for actors and critics as well. We
would recommend that practitioners pay specific attention to
how policy rewards and value losses evolve as a function
of these architectural choices. If starting from symmetric
architectures, we would recommend identifying the point of
diminishing returns when increasing the critic parameters and
building from there to reduce actor complexity.

VI. RELATED WORK

Prior work by Islam et al. [11] and Henderson et al. [21]
touch on the impact of network size on the performance of RL
algorithms but their analyses are more limited to a smaller
set of environments and architectures. Both works consider

http://ai.bu.edu/littleActor/


networks with 3 different possible hidden layer configurations:
|400, 300|, |64, 64| and |100, 50, 25|, common sizes used in
prior literature. There is anecdotal evidence in these works to
suggest that larger actors are not necessarily more performant
and that larger critics can usually learn better, but the data
presented does not lend itself to clear conclusions.

Asymmetry in actors and critics appears to have first been
explicitly addressed by Pinto et al. [34] in controlling robotic
manipulation. The authors explore a form of input asymmetry
between actors and critics, where actor networks are offered
reduced state information from an RGBD sensor, while the
critic is offered full-state information from a simulator during
training. They demonstrate that actors are able to actually
perform better under this reduced information paradigm, likely
due to the reduced representational complexity. An interpre-
tation of the implications of their work is that it also hints at
the idea of the onerous of learning more robust and complex
representations may perhaps lie more with the critic side of
the network.

Henderson et al. [21] provide a cursory analysis on the
impact of disentangling the actor and critic architectures and
consider how different algorithms behave in different training
environments as a result of changing network structures.
They note the sensitivity of algorithms to these details but a
limitation of their analysis is that it sacrifices depth for breadth
as this is just one of many hyper-parameters they investigate.
Their analysis appears to primarily seek to identify if there
is a correlation between performance and actor and critic ar-
chitectures when considered independently. However only two
environments and a limited set of network configurations are
tested, preventing clear conclusions being drawn on how actor
and critic architectures relate to each other. By considering a
wider range of network sizes and environments, we are able
to formulate and test a clearer hypothesis on the relationship
between network sizes, both for the actors and critics, and
their impact on performance.

Recent concurrent work by Andrychowicz et al. [23] dis-
cusses a large scale study on the impact of different hyperpa-
rameters on RL performance on 5 OpenAI Gym [30] continu-
ous controls benchmark tasks. Network architecture is among
the many parameters considered and, like us, the authors also
extend their study past the typically used architectures to
consider a wider range of network sizes, the impact of varying
actor and critic sizes separately and also of varying the depth
of the networks. Like us, the authors make note of the fact that
it is possible to use smaller actors and that RL agents more
often benefit from having larger critics. They also identified
that increasing network depth was not necessarily beneficial,
an observation also noted by Sinha et al. [24]. The authors’
focus, being on performance maximization, as opposed to net-
work complexity reduction however, results in them ultimately
prioritizing different aspects of the network architecture —
such as policy initialization and output activation — in addi-
tion to a wider array of non-architecture-related parameters.
While they do contribute useful and important observations
and recommendations on tuning those parameters for more

performant policies, the do not make stronger statements on
how the sizes of actors and critics may interact with each
other, but mainly that they ought to be paid attention to. Their
results do however independently corroborate ours (and ours,
theirs).

Reducing the parameter count of neural networks has also
received interest in the broader machine learning community.
Techniques like pruning [35], knowledge distillation [36], and
weight sharing [37] have been shown to accelerate inference
and reduce memory requirements, enabling deployment on
resource-constrained mobile hardware. In RL, policy distil-
lation [38] has been demonstrated as an effective tool for
reducing network sizes using a teacher-student method where a
larger pre-trained teacher network guides a smaller student net-
work which learns to match the teacher’s performance. Smaller
students learning equivalently functional policies suggests an
excess in modeling capacity of more typical architectures for
policy networks.

VII. CONCLUSION

We hypothesized that this capacity for actor size reduction
comes from the burden of modeling and understanding envi-
ronment dynamics falling largely to the critic, rather than the
actor. Provided that the critic has sufficient capacity to learn
a decent estimation of the value function, we predicted that it
would often be possible to train actors that are significantly
smaller than the critic. The results presented in this case study
substantiate this hypothesis. We demonstrated that, by relaxing
the implicit assumption of symmetry in the architectures of
actors and critics in actor-critic RL, it is possible to train
significantly smaller networks for tasks without a significant
degradation in policy performance. We demonstrate as much
as a 97% reduction in the number of weights needed to
represent viable actor policies, with an average actor size
reduction of 77% in actor network sizes for the tested tasks.
We believe that the implications of these results can be highly
significant to practical applications of RL, particularly in
resource-constrained systems, and that it is also worth being
generally aware of as part of the broader effort to understand
how network sizes can impact actor-critic RL performance.
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APPENDIX

A. Toy Problem Setup Details

Additional setup details for the toy-problem in Section III:
• Goal generation: Goals gt are procedurally generated

by functions mapping an input ‘time’ signal to the range
[−1, 1] using a simplex [39] function.

• System Dynamics: The response to action, at is com-
puted as st+1 = clip(st + at,−1, 1).

B. Per-task Policy Network Sizes

Weight-counts for each environment are computed separately
to account for their different state and action dimensions.

TABLE A.2
NUMBER OF ACTOR-NETWORK WEIGHT PARAMETERS PER ENVIRONMENT

FOR EACH OF THE ENVIRONMENTS CONSIDERED

Hidden Size Pen Rea HCh Ant Acr Png Pxl FdC
|400, 300| 122201 125702 129306 167508 124003 124403 124102 143104
|256, 256| 67073 69378 71942 96520 68355 68611 68354 80644
|128, 128| 17153 18306 19590 31880 17795 17923 17794 23940
|64, 64| 4481 5058 5702 11848 4803 4867 4802 7876
|32, 32| 1217 1506 1830 4904 1379 1411 1378 2916
|16, 16| 353 498 662 2200 435 451 434 1204
|8, 8| 113 186 270 1040 155 163 154 540
|4, 4| 41 78 122 508 63 67 62 256
|1, 1| 8 18 32 130 15 - - -

Pen: Gym Pendulum-v0
Rea: Gym Reacher-v2

HCh: Gym HalfCheetah-v2
Ant: Gym Ant-v2
Png: PLE Pong
Pxl: PLE Pixelcopter

FdC: Unity ML-agents Food Collector
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