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Described in more detail in our ICLR 
2018 submission

“Self-Ensembling for Visual Domain 
Adaptation”

https://arxiv.org/abs/1706.05208 (v2)
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Model
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Self-ensembling developed for semi-
supervised learning in [Laine17]

Further developed in [Tarvainen17] 
(mean teacher model)



https://arxiv.org/abs/1706.05208
Self-Ensembling for Visual Domain Adaptation

Mean-teacher model

Standard classifier DNN
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Mean-teacher model

Weights of teacher network are exponential 
moving average of student network
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Source domain sample:

Traditional supervised cross-entropy loss
(with data augmentation)
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Target domain sample:

one sample
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Target domain sample:

augment twice, differently each time
(gaussian noise, translation, flip)
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Target domain sample:

One path through student network
Second through teacher

(different dropout)
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Target domain sample:

Result: two predicted probability vectors
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Target domain sample:

Self-ensembling loss: train network to learn 
to make them the same (squared difference)

𝑥"#
stochastic 

aug.

cross-
entropy

Squared 
diff

Weighted 
sum

loss𝑧"#

𝑦&#
𝑥&#

�̃�"#

Student network

Teacher network



https://arxiv.org/abs/1706.05208
Self-Ensembling for Visual Domain Adaptation

Self-ensembling performs label 
propagation over unsupervised samples
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Model so far may handle simple domain 
adaptation tasks…



https://arxiv.org/abs/1706.05208
Self-Ensembling for Visual Domain Adaptation

Our adaptations for domain 
adaptation
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Separate source and target batches

Per training iteration, process source 
and target mini-batches separately

Each gets its own batch norm stats, bit 
like AdaBN [Li16]
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Confidence thresholding 

If confidence of teacher predictions 
<96.8%, mask self-ensembling loss for 

that sample to 0
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MORE Data augmentation

VisDA model

Random crops, rotation, scale, h-flip
Intensity/brightness scaling, colour 
offset, colour rotation, desaturation
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MORE Data augmentation

Our small image benchmarks:

1 +𝒩 0,0.1 𝒩 0,0.1
𝒩 0,0.1 1 +𝒩 0,0.1
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Class balancing

Binary-cross-entropy loss between 
target domain predictions (averaged 
over sample dimension) and uniform 

probability vector
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Class balancing

Otherwise in unbalanced datasets one class 
is re-inforced more than the others 

Classifier separates source domain from 
target and assigns all target domain samples 

to most populous class
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Works with randomly initialised nets

e.g. for small image benchmarks
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Works with pre-trained nets

e.g. the ResNet 152 we used for VisDA J
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VisDA-17 Results



https://arxiv.org/abs/1706.05208
Self-Ensembling for Visual Domain Adaptation

Images from VisDA-17

Validation setTraining set

UnlabeledLabeled
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Model

Fine-tuned ResNet-152

Remove classification layer (after global 
pooling)

Replace with two fully-connected layers
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Notes

Test set augmentation

Predictions were computed by augmenting 
each test sample 16x and averaging 

predictions

Gained 1-2% MCA on validation set
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Notes

5 network ensemble

Predictions of 5 independent training runs 
were averaged

Gained us ~0.5% MCA on test set



https://arxiv.org/abs/1706.05208
Self-Ensembling for Visual Domain Adaptation

VisDA-17

VALIDATION Acc TEST Acc

Resnet-50 82.8 Resnet-50

Resnet-152 Resnet-152
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VisDA-17

VALIDATION Acc TEST Acc

Resnet-50 82.8 Resnet-50

Resnet-152 85.3* Resnet-152

* Not on leaderboard
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VisDA-17

VALIDATION Acc TEST Acc

Resnet-50 82.8 Resnet-50 ~80

Resnet-152 85.3* Resnet-152

* Not on leaderboard
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VisDA-17

VALIDATION Acc TEST Acc

Resnet-50 82.8 Resnet-50 ~80

Resnet-152 85.3* Resnet-152 92.8

* Not on leaderboard
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VisDA-17

VALIDATION Acc TEST Acc

Resnet-50 82.8 Resnet-50 ~80

Resnet-152 85.3* Resnet-152 92.8

Plane Bike Bus Car Horse Knife

Val 96.3 87.9 84.7 55.7 95.9 95.2

Test 96.9 92.4 92.0 97.2 95.2 98.8

MCycle Person Plant Skbrd Train Truck MEAN

Val 88.6 77.4 93.3 92.8 87.5 38.2 82.8

Test 86.3 75.3 97.7 93.3 94.5 93.3 92.8

* Not on leaderboard
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Validation set

Lots of confusion between car and truck

Much less so on test set
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Small image results
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MNIST ⟷ USPS

Model USPS → MNIST MNIST → USPS

Sup. on SRC 91.97 96.25

SBADA-GAN
[Russo17]

97.60 95.04

OURS 99.54 98.26

Sup. On TGT 99.62 97.83

MNIST USPS
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Syn-digits → SVHN

Model Syn-digits → SVHN

Sup. on SRC 86.96

ATT
[Saito17]

93.1

OURS 96.00

Sup. On TGT 95.55

Syn-digits SVHN
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Syn-signs → GTSRB

Model Syn-signs → GTSRB

Sup. on SRC 96.72

ATT
[Saito17]

96.2

OURS 98.32

Sup. On TGT 98.54

Syn-signs GTSRB
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SVHN (greyscale*) → MNIST

Model SVHN → MNIST

Sup. on SRC 73.00

ATT
[Saito17]

76.14

OURS 99.22

Sup. On TGT 99.66

SVHN (grey) MNIST

* [Ghiffary16]
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MNIST → SVHN (greyscale)

Model MNIST → SVHN

Sup. on SRC 28.78

SBADA-GAN
[Russo17]

61.08

OURS 41.98

Sup. on TGT 96.68

MNIST SVHN (grey)
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MNIST → SVHN (greyscale)

Model MNIST → SVHN

Sup. on SRC (aug) 64.82

SBADA-GAN
[Russo17]

61.08

OURS 96.6

Sup. on TGT (aug) 97.3

MNIST (aug) SVHN (grey)



Conclusions
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Our approach has produced good 
results

It won VisDA J
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Promising avenue for domain 
adaptation: two components…
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STEP 1. Align source and target 
distributions

Pre-trained net, data augmentation, …

Prior work in the field (e.g. CORAL, 
AdaBN) does this!
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STEP 2. refine correspondence

Self-ensembling is well suited to this



THANK YOU!
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