Self-ensembling for visual domain adaptation

Geoff French – g.french@uea.ac.uk

Colour Lab (Finlayson Lab)

University of East Anglia, Norwich, UK

Image montages from http://www.image-net.org

Thanks to

My supervisory team: Prof. G. Finlayson, Dr. M. Mackiewicz

Competition organisers and all participants

Described in more detail in our ICLR 2018 submission

"Self-Ensembling for Visual Domain Adaptation"

https://arxiv.org/abs/1706.05208 (v2)

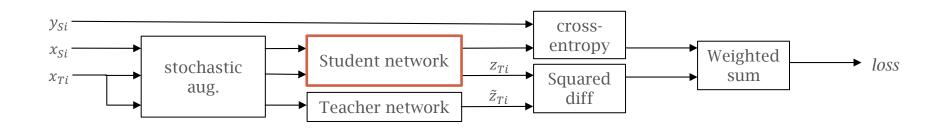
Model

Self-ensembling developed for semisupervised learning in [Laine17]

Further developed in [Tarvainen17] (mean teacher model)

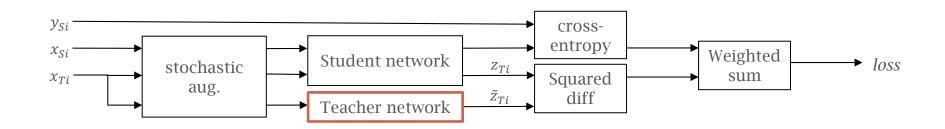
Mean-teacher model

Standard classifier DNN



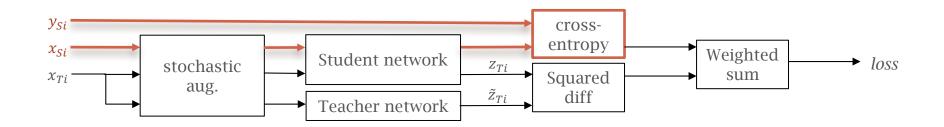
Mean-teacher model

Weights of teacher network are exponential moving average of student network

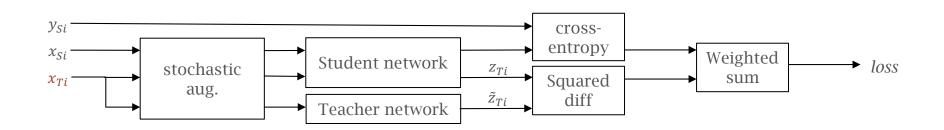


Source domain sample:

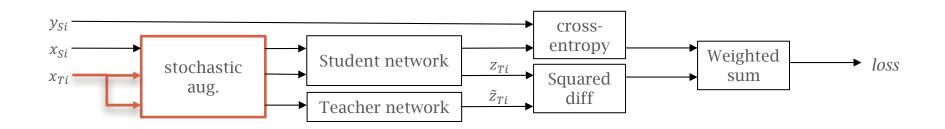
Traditional supervised cross-entropy loss (with data augmentation)



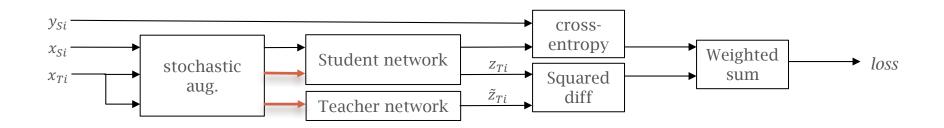
one sample



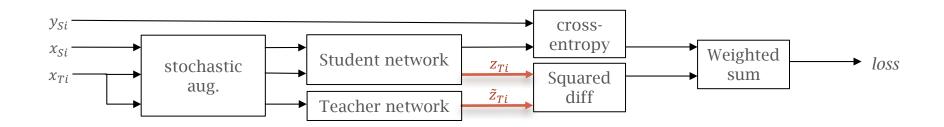
augment twice, differently each time (gaussian noise, translation, flip)



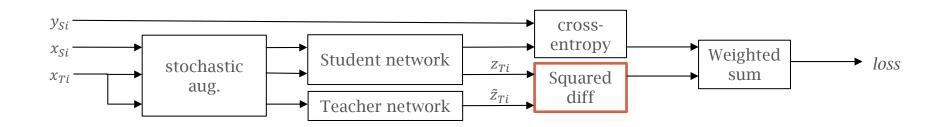
One path through student network Second through teacher (different dropout)



Result: two predicted probability vectors



Self-ensembling loss: train network to learn to make them the same (squared difference)



Self-ensembling performs label propagation over unsupervised samples

Model so far may handle simple domain adaptation tasks...

Our adaptations for domain adaptation

Separate source and target batches

Per training iteration, process source and target mini-batches separately

Each gets its own batch norm stats, bit like AdaBN [Li16]

Confidence thresholding

If confidence of teacher predictions <96.8%, mask self-ensembling loss for that sample to 0

MORE Data augmentation

VisDA model

Random crops, rotation, scale, h-flip Intensity/brightness scaling, colour offset, colour rotation, desaturation

MORE Data augmentation

Our small image benchmarks:

 $\begin{bmatrix} 1 + \mathcal{N}(0, 0.1) & \mathcal{N}(0, 0.1) \\ \mathcal{N}(0, 0.1) & 1 + \mathcal{N}(0, 0.1) \end{bmatrix}$

Class balancing

Binary-cross-entropy loss between target domain predictions (averaged over sample dimension) and uniform probability vector

Class balancing

Otherwise in unbalanced datasets one class is re-inforced more than the others

Classifier separates source domain from target and assigns all target domain samples to most populous class

Works with randomly initialised nets

e.g. for small image benchmarks

Works with pre-trained nets

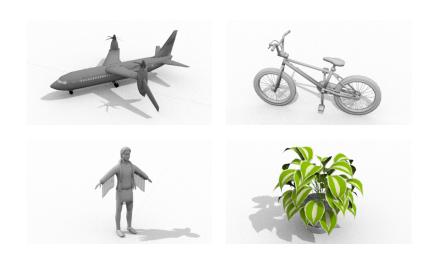
e.g. the ResNet 152 we used for VisDA $\ensuremath{\textcircled{}}$

VisDA-17 Results

Images from VisDA-17

Training set

Validation set



Labeled

Unlabeled

Model

Fine-tuned ResNet-152

Remove classification layer (after global pooling)

Replace with two fully-connected layers

Notes

Test set augmentation

Predictions were computed by augmenting each test sample 16x and averaging predictions

Gained 1-2% MCA on validation set

Notes

5 network ensemble

Predictions of 5 independent training runs were averaged

Gained us ~0.5% MCA on test set

VALIDATION	Acc	TEST	Acc
Resnet-50	82.8	Resnet-50	
Resnet-152		Resnet-152	

VALIDATION	Acc	TEST	Acc
Resnet-50	82.8	Resnet-50	
Resnet-152	85.3*	Resnet-152	

* Not on leaderboard

VALIDATION	Acc	TEST	Acc
Resnet-50	82.8	Resnet-50	~80
Resnet-152	85.3*	Resnet-152	

* Not on leaderboard

VALIDATION	Acc	TEST	Acc
Resnet-50	82.8	Resnet-50	~80
Resnet-152	85.3*	Resnet-152	92.8

* Not on leaderboard

VALIDATION	Acc	TEST	Acc
Resnet-50	82.8	Resnet-50	~80
Resnet-152	85.3*	Resnet-152	92.8

	Plane	Bike	Bus	Car	Horse	Knife
Val	96.3	87.9	84.7	55.7	95.9	95.2
Test	96.9	92.4	92.0	97.2	95.2	98.8

	MCycle	Person	Plant	Skbrd	Train	Truck	MEAN
Val	88.6	77.4	93.3	92.8	87.5	38.2	82.8
Test	86.3	75.3	97.7	93.3	94.5	93.3	92.8

* Not on leaderboard

Validation set

Lots of confusion between car and truck

Much less so on test set

Small image results

$MNIST \leftrightarrow USPS$

Model	USPS \rightarrow MNIST	$MNIST \rightarrow USPS$
Sup. on SRC	91.97	96.25
SBADA-GAN [Russo17]	97.60	95.04
OURS	99.54	98.26
Sup. On TGT	99.62	97.83

Syn-digits \rightarrow SVHN

Model	Syn-digits → SVHN
Sup. on SRC	86.96
ATT [Saito17]	93.1
OURS	96.00
Sup. On TGT	95.55

Syn-signs \rightarrow GTSRB

Model	Syn-signs → GTSRB
Sup. on SRC	96.72
ATT [Saito17]	96.2
OURS	98.32
Sup. On TGT	98.54

SVHN (greyscale*) \rightarrow MNIST

SVHN	(grey)	
Q 100	U.S.B.	20
0.0	DO	26

Model	SVHN → MNIST
Sup. on SRC	73.00
ATT [Saito17]	76.14
OURS	99.22
Sup. On TGT	99.66

* [Ghiffary16]

MNIST \rightarrow SVHN (greyscale)

MN	VIST	Γ		
O_l	0	9	3	8

Model	$MNIST \rightarrow SVHN$
Sup. on SRC	28.78
SBADA-GAN [Russo17]	61.08
OURS	41.98
Sup. on TGT	96.68

MNIST \rightarrow SVHN (greyscale)

M	VIS7	Г (а	ug)	
O_l	0	9	3	8

Model	$MNIST \rightarrow SVHN$
Sup. on SRC (aug)	64.82
SBADA-GAN [Russo17]	61.08
OURS	96.6
Sup. on TGT (aug)	97.3

Conclusions

Our approach has produced good results

It won VisDA 🙂

Promising avenue for domain adaptation: two components...

STEP 1. Align source and target distributions

Pre-trained net, data augmentation, ...

Prior work in the field (e.g. CORAL, AdaBN) does this!

STEP 2. refine correspondence

Self-ensembling is well suited to this

THANK YOU!

References

[Ghiffary16] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li. "Deep reconstruction-classification networks for unsupervised domain adaptation." *ECCV* 2017.

[Laine17] Samuli Laine and Timo Aila . "Temporal Ensembling for Semi-Supervised Learning." *ICLR* 2017.

[Li16] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou . "Revisiting batch normalization for practical domain adaptation." 2016.

[Saito17] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada . "Asymmetric Tri-training for Unsupervised Domain Adaptation" 2017.

[Russo17] Paolo Russo, Fabio Maria Carlucci, Tatiana Tommasi, and Barbara Caputo

. "From source to target and back: symmetric bi-directional adaptive GAN." 2017.

[Tarvainen17] Antti Tarvainen and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results." 2017.