VisDA Classification Challenge: Runner-Up Talk

G. Csurka, B. Chidlovskii and S. Clinchant

Naver Labs Europe, France

firstname.lastname@naverlabs.com

VisDA Classification Challenge

Our Approach

- Assembly of Shallow Domain Adaptation Networks (SDAN)
- We extract deep features
 - Off-the-shelf models pre-trained on ImageNet
 - Inception ResNet v2, Inception v3 and v4, ResNet 152

- We test two groups of methods
 - Discrepancy-based SDANs and their multiple variants
 - Adversarial Learning SDANs

Discrepancy-based SDANs

Max Mean Discrepancy (MMD) with multiple kernels [Gretton'12]

► MMD in DAN for learning transferable features [Long'15]

SDAN Variants

- ▶ Residual SDAN: $W_t = W_s + W_n$, where $W_n \sim N(0, \frac{2}{n_d})$
- Random Kernels: in any batch, 5 MMD kernel bandwidths are drawn from a Gamma distribution
- Adversarial SDAN: non-shared version
 - Define D_p be a projection (analog to Discriminator) in the kernel space

- For the loss L_{MMD} , alternate two optimization steps:
- min_{Ws, Wt} L_{MMD} and max_{Dn} L_{MMD}

Adversarial Learning

Extend InfoGAN to Domain Adaptation

- Source/Target Mappers, Classifier and Discriminator like in ADDA [Tzeng'17]
- Latent variables c: class labels for Source, random for Target
- ► Shared layers of Discriminator and Q-function

Assembling approach

- Average the softmax values or by the majority voting
- Combine methods with a good expected accuracy and important variability
 - Different deep features
 - Shared weights and residual SDANs
 - MMD kernels with fixed or random kernel bandwidths
 - Subsets of training data to adapt SDANs
 - Different D and Q layer sharing in adversarial SDANs

Averaging: 2 levels

- Averaging SDAN versions with different parameters yields $\sim 3\%$
 - ResNet features:

SDAN	Resid	RndKrnls	Resid+RndKrnls	 All
77.6	77.95	79.1	77.55	 81.6

ightharpoonup Averaging of 'Averaged' SDANs by features yields again $\sim 3\%$

ResNet	Incep-ResNet	InceptV3	InceptV4	All
81.6	84.9	84.1	84.1	87.4

															MeanAco
			plane	bcycl	bus	car 🛦	horse	horse	mcycl	person		sktbd	train	truck	^
1	GF_ColourLab_UEA		96.9	92.4	92.0	97.2	95.2	98.8	86.3	75.3	97.7	93.3	94.5	93.3	92.8
2	NLE_DA		94.3	86.5	86.9	95.1	91.1	90.0	82.1	77.9	96.4	77.2	86.6	88.0	87.7
	BUPT OVERFIT	BUPT OVERFIT	95.7	67.0	93.4	97.2	90.6	86.9	92.0	74.2	96.3	66.9	95.2	69.2	85.4