VisDA Classification Challenge:

Runner-Up Talk

G. Csurka, B. Chidlovskii and S. Clinchant

Naver Labs Europe, France
firstname.lastname@naverlabs.com

VisDA Classification Challenge

Our Approach

- Assembly of Shallow Domain Adaptation Networks (SDAN)
- We extract deep features
- Off-the-shelf models pre-trained on ImageNet
- Inception ResNet v2, Inception v3 and v4, ResNet 152

- We test two groups of methods
- Discrepancy-based SDANs and their multiple variants
- Adversarial Learning SDANs

Discrepancy-based SDANs

- Max Mean Discrepancy (MMD) with multiple kernels [Gretton'12]

- MMD in DAN for learning transferable features [Long'15]

SDAN Variants

- Residual SDAN: $W_{t}=W_{s}+W_{n}$, where $W_{n} \sim N\left(0, \frac{2}{n_{d}}\right)$
- Random Kernels: in any batch, 5 MMD kernel bandwidths are drawn from a Gamma distribution
- Adversarial SDAN: non-shared version
- Define D_{p} be a projection (analog to Discriminator) in the kernel space

- For the loss $L_{M M D}$, alternate two optimization steps:
- $\min _{W_{s}, W_{t}} L_{M M D}$ and $\max _{D_{p}} L_{M M D}$

Adversarial Learning

Extend InfoGAN to Domain Adaptation

- Source/Target Mappers, Classifier and Discriminator like in ADDA [Tzeng'17]
- Latent variables c : class labels for Source, random for Target
- Shared layers of Discriminator and Q-function

Assembling approach

- Average the softmax values or by the majority voting
- Combine methods with a good expected accuracy and important variability
- Different deep features
- Shared weights and residual SDANs
- MMD kernels with fixed or random kernel bandwidths
- Subsets of training data to adapt SDANs
- Different D and Q layer sharing in adversarial SDANs

Averaging: 2 levels

- Averaging SDAN versions with different parameters yields $\sim 3 \%$
- ResNet features:

SDAN	Resid	RndKrnls	Resid+RndKrnls	\ldots	All
77.6	77.95	79.1	77.55	\ldots	$\mathbf{8 1 . 6}$

- Averaging of 'Averaged' SDANs by features yields again $\sim 3 \%$

ResNet	Incep-ResNet	InceptV3	InceptV4	All
81.6	84.9	84.1	84.1	$\mathbf{8 7 . 4}$

Leaderboard: ImageNet Pretraining															
\#	User	Team Name	Per Category Accuracy												MeanAcc
			plane	beycl	bus A	car \boldsymbol{A}	horse	horse A	mcycl	person A	plant A	sktbd	train	truck	
1	GF_ColourLab_UEA		96.9	92.4	92.0	97.2	95.2	98.8	86.3	75.3	97.7	93.3	94.5	93.3	92.8
2	NLE_DA		94.3	86.5	86.9	95.1	91.1	90.0	82.1	77.9	96.4	77.2	86.6	88.0	87.7
3	BUPT_OVERFIT	BUPT_OVERFIT	95.7	67.0	93.4	97.2	90.6	86.9	92.0	74.2	96.3	66.9	95.2	69.2	85.4

