VisDA Challenge 3rd place

Adversarial Domain Adaptation for Semantic Segmentation

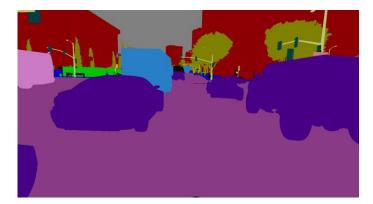
Wei-Chih Hung¹, Yi-Hsuan Tsai², Ming-Hsuan Yang¹ ¹UC Merced, ²NEC Labs America

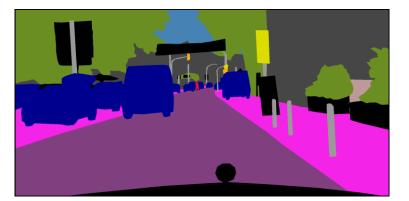
VisDA 2017 Challenge

Source Dataset: GTA5

Target Dataset (Validation): Cityscapes

Target Dataset (Challenge)





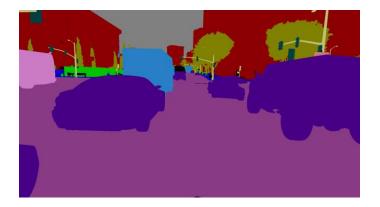
Motivation

Source

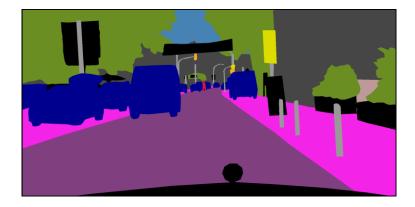
Input images are different

Target

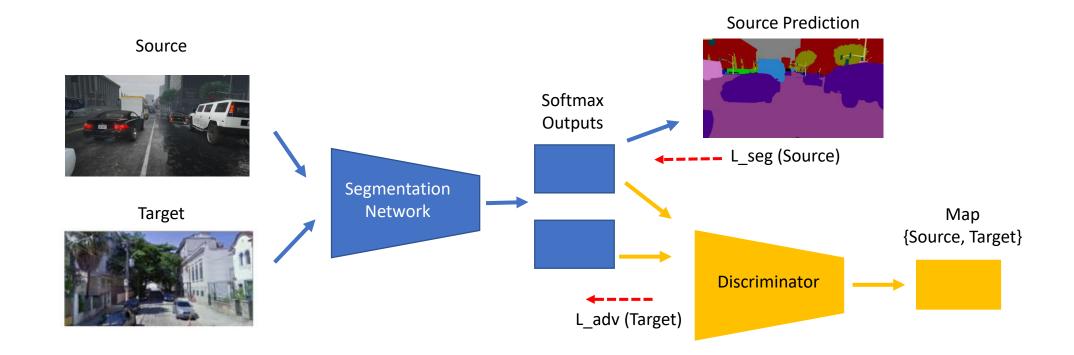
Idea: make the predictions on both datasets look similar



Ground truth labels' layout distributions are similar



Adversarial Learning for Domain Adaptation



Implementation Details

- We use PyTorch
- Baseline model: DeepLab-v2 without multi-scale
 - ResNet-101
 - Pretrained only with ImageNet
 - ~65% mean IOU on Cityscapes
- It is essential to balance:
 - Segmentation network and discriminator
 - L_seg and L_adv

Experimental Results

• GTA -> Cityscapes

	Baseline	Adapt
Mean IOU	32.33	42.44

• GTA -> Test Set

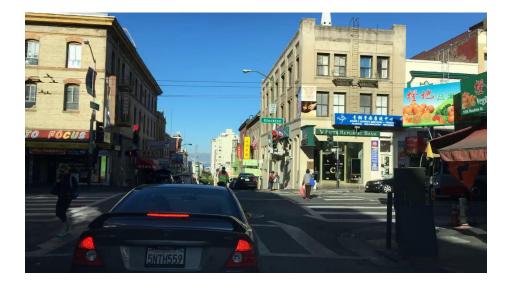
	Baseline	Adapt
Mean IOU	30.3	42.4

Detailed Class Performance on Test Set

#	User	Team	road		sdwlk		bldng		wall		fence		pole		light		sign		vgttn		trrn	
		Name	SrC	adapt	S	а	S	а	S	а	S	а	S	а	S	а	S	а	S	а	S	а
3	whung	VLLAB	30.8	87.2	16.3	33.3	44.7	70.2	2.6	13.6	20.5	27.8	28.2	29.3	34.4	32.9	27.9	27.9	67.8	77.2	11.4	28.6
#	User	Team Name		ky	pe	rson		der		car		uck	k	ous		ain		cycl	bo	cycl	Mea	anloU
#	User		S	ky a	s pe	rson a	s	der a	S	car a	s tr	uck a	s	ous a	s tr	ain a	s m	cycl a	s bo	cycl a	Mea s	anloU a

- Improve 17 classes
- 11 classes have improvement over 10%
- 2 classes (turn light, motorcycle) perform a bit worse

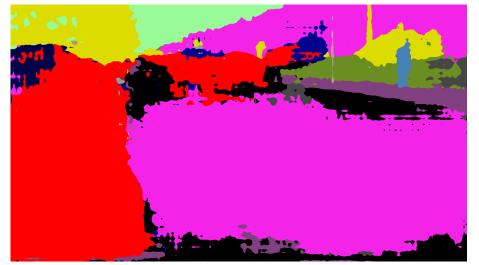
Visualization

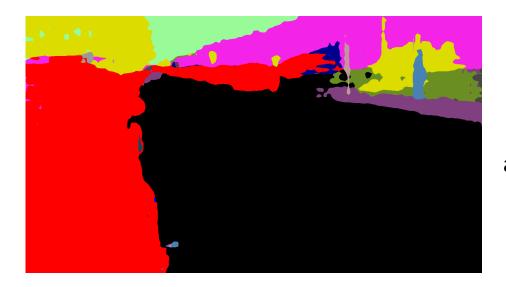


baseline

adapt

Visualization





adapt

Visualization

baseline

adapt

Conclusions

- Adversarial learning can help domain adaptation without any handcrafted criterions
- Our designed model is end-to-end, one-stage training, and can be adapted to other segmentation networks
- During inference, there is no extra computation