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Abstract

The most successful 2D object detection methods require a large number of images
annotated with object bounding boxes to be collected for training. We present an alter-
native approach that trains on virtual data rendered from 3D models, avoiding the need
for manual labeling. Growing demand for virtual reality applications is quickly bring-
ing about an abundance of available 3D models for a large variety of object categories.
While mainstream use of 3D models in vision has focused on predicting the 3D pose
of objects, we investigate the use of such freely available 3D models for multicategory
2D object detection. To address the issue of dataset bias that arises from training on vir-
tual data and testing on real images, we propose a simple and fast adaptation approach
based on decorrelated features. We also compare two kinds of virtual data, one rendered
with real-image textures and one without. Evaluation on a benchmark domain adaptation
dataset demonstrates that our method performs comparably to existing methods trained
on large-scale real image domains.

1 Introduction

Recent success of multicategory object detection relies heavily on the availability of large
amounts of labeled training data. For example, the PASCAL VOC dataset [4] uses a total
of over 10,000 labeled images to train detectors for 20 common object categories. Unfor-
tunately, such data collection is extremely time-consuming and does not scale to tens or
even hundreds of thousands of object categories and subcategories used by humans. What is
worse, the web—the primary source of large-scale training data—is biased in ways that make
finding images that match the statistics of realistic test images problematic [20, 24].

In this paper, we propose to bypass expensive 2D image collection and annotation and
instead use freely available 3D models of objects to generate training data. Previous work
generated synthetic data from 3D models for 2D detection, but has been limited to a few
categories [15]. We capitalize on increasing availability of a large variety of 3D object
models on websites such as Google 3D Warehouse'. The number of models available for
some categories is staggering (a search for fable returns 39,815 results) and projects using
them range from kitchen designs to recreations of entire downtowns.

One barrier to tapping into this rich data source is that the vast majority of freely available
models are not photorealistic, i.e. they generate 2D object images that do not look real,
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Figure 1: Conventional object detection requires a high-cost manual annotation effort to
collect and label a large number of training images. Our approach bypasses labor-intensive
labeling and generates models directly from 3D models downloaded from the web. With
only 2 models per object category, it performs comparably to the coventional approach when
detecting a variety of object categories in real test images.

despite being recognizable. Unrealistic backgrounds, surface textures and lighting all result
in image statistics that differ significantly from those of real images. Thus training on virtual
images and testing on real images brings us right back to the problem of dataset bias.

[27] addressed the bias issue using supervised domain adaptation techniques. They ob-
tained state-of-the-art pedestrian detection results on the KITTI autonomous driving bench-
mark [6] by training on auxiliary data generated from a video game. However, their domain
adaptation method requires a substantial amount of labeled target domain images, as well as
access to a video game engine’s 3D model. While some open source games may provide
access to their rendering engines, we believe the web to be a much better source or arbi-
trary category models. Also, the web models are created with accessible tools like Google
Sketchup and can be crowdsourced on a large scale.

We present an approach to quickly train and adapt multicategory virtual detectors to real
image domains. Perhaps counter-intuitively, we show that photorealistic training data is not
required to train virtual models that generalize to real domains. The reason is that modern
discriminative detectors based on gradient features throw away the “background statistics”
and retain only the average shape and category-specific texture. For example, the backpack
model trained on a large number of real images shown in Figure 1 learns the round shape of
a backpack but ignores textures specific to individual backpacks.

Hariharan et al. [10] showed that such a discriminative model can be learned efficiently
by decorrelating the input features, and then simply computing the mean of the positive
class. They proposed to compute the local covariance and mean negative class (background)
statistics of real images once, and use them for all future detection tasks. We build on this
idea, however, we show that its assumption of a single one-fits-all set of real image statistics
breaks down in transfer learning scenarios such as virtual to real domain adaptation. The key
to our approach is utilizing background statistics that match the source and target domains.

We evaluate our method on a benchmark aimed to simulate home robotics tasks [20]. It
contains real images of everyday object categories found in a typical home or office, some
of which are shown as the “test images” in Figure 1. Experiments show that our approach
performs comparably to training on real-image web domains. Furthermore, when a small
number of labeled images is available in the target domain, we propose efficient supervised
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adaptation following the method of [7]. In this case, our method using auxiliary virtual
data slightly outpeforms the approach using real-image web domains reported in [7] on the
benchmark.

To summarize, our paper makes the following major contributions: (1) we show that
freely available non-photorealistic 3D models can be used to train 2D object detectors, in
a first such study that evaluates across a large variety of categories; (2) we eliminate the
need to generate images that match real-image statistics by utilizing domain-specific image
statistics; (3) we present a supervised adaptation approach, and show improved results on a
multi-domain dataset.

2 Related work

3D Models for Detection. Most previous work utilizing 3D models focuses on predicting
the 3D pose or viewpoint of an object in 2D test images [14, 18, 22, 23, 25], or categorizing
an object from an arbitrary novel viewpoint [21]. While these are important computer vision
tasks, in this paper, we focus solely on 2D object detection, where the goal is to output a 2D
bounding box and category label.

Some 3D pose prediction methods have also been applied to 2D detection. For example,
[15] show competitive performance with state-of-the-art 2D object detectors on car and mo-
torcycle classes in PASCAL. They extract a set of discriminant features from synthetic 3D
object models suitable for matching to real image data and represent them by their appear-
ance and 3D position. However the vast majority of methods use annotated 2D images in
some form, either to build 3D models via complex structure-from-motion techniques, or to
combine 3D models with natural image appearance [15]. [25] collect a large dataset of real
images annotated with 3D pose for 12 rigid categories of PASCAL, and show results of both
2D detection and pose estimation, training multi-view detectors for each distinct object pose
on labeled real images. In contrast, we do not require labeled 2D images and train solely
on a small number of 3D models (2 per category) downloaded from the web. Our method
requires no tedius manual part or bounding box annotation, nor matching of real appearance
with virtual models.

The idea of using 3D models of objects as the only source of information was first intro-

duced in the early days of computer vision, see e.g., [17]. [22] go “back to the future” of the
field and use 3D CAD models of cars as the only source of labeled data. They detect differ-
ent viewpoints of cars and show performance comparable to approaches using real images.
However, their approach involves 41 extremely detailed CAD models of cars. It is unclear
how easily such models can be obtained for arbitrary categories. Also, a major drawback
of existing methods is that they have been demonstrated only on a handful of object cate-
gories, namely, car [14, 23], bicycle [14] and motorcycle[15]. We show the feasibility of our
approach for a varied set of 20 object categories.
Domain Adaptation Domain adaptation is the standard approach to alleviate dataset bias
caused by a difference in the statistical distributions between training and test data. In com-
puter vision, several domain adaptation models have been proposed for object categorization.
These can be divided into supervised methods that use a small number of labeled examples
in the target domain [11, 12, 13], and unsupervised methods that use only unlabeled target
examples [8, 9].

For detection tasks, a class of supervised models that adjust the parameters of a classifier
trained on source data have been proposed for linear support vector machines [1, 28], as
well as for variants of SVMs, e.g., adaptive latent SVM [27] or adaptive exemplar SVM [2].
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Figure 2: Some of the 3D models used in this paper.

Recently there has been considerable interest in scalable training of many object detectors.
The supervised domain adaptation method of [7] proposes a fast adaptation technique that
builds on a recent efficient approach to learn detectors based on whitened HOG (WHO) fea-
tures [10]. It can learn and adapt a model in a few seconds, compared to hours of training
an SVM, but, like [10], assumes that the same whitening procedure works for all domains.
We argue that this is not the case, and present an improved method that achieves better re-
sults. A related method that used exemplar LDA to train pedestrian classifiers and performed
supervised adaptation on them using a boosting approach was shown in [26].

Unsupervised adaptation of detectors was explored in [19] for the pedestrian class. To

the best of our knowledge, ours is the first unsupervised method applied to a large variety of
object categories.

3 Virtual Data
3.1 3D Models

The 3D models used in this paper were downloaded from Google 3D Warehouse by search-
ing for the names of 20 object categories in the Office dataset [20]. The returned models
vary considerably, from very simple ones to complicated ones. For each category, two mod-
els with similar shapes as the objects in the real world were selected from the first one or two
pages of returned results. Some of the selected 3D models are shown in Figure 2.

3.2 2D Data Generation

The 3D models were then rendered in 3ds Max to generate 2D virtual training data. In order
to investigate the role of image statistics, two sets of virtual data were generated. The first,
referred to as Virtual, attempts to create images that better match real image statistics. It
does so by using random image selected from ImageNet [3] as background and texturemap
on the object. The second, referred to as Virtual-Gray, forgoes photorealism altogether and
uses a uniform gray texturemap and white background.

For each model, 15 random poses were generated by rotating the original 3D model by
a random angle from O to 20 degrees in each of the three axes. Since the angle of rotation
was generated randomly, the poses are different for each model. In this paper we do not
attempt to model multiview components (we leave that to future work), so the goal was to
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Figure 3: Two sets of virtual images were genereated: (a) Virtual: background and tex-
turemap from a random real ImageNet image; (b) Virtual-Gray: uniform gray texturemap
and white background.

generate some small variations in pose and learn a single template from all images. The
random background and texture from ImageNet or gray texture and white background was
then applied to each pose to get the final 2D virtual data. The default lighting was used. Thus,
for each category, there were 30 different rendering settings and 30 corresponding 2D virtual
images were generated. The rendering process above was fully automated in MAXScript.

To get the annotations, a parallel set of images was also generated which share the same
rendering setting as the virtual image generated above except that the background is always
white. These images were only used in automatically calculating the bounding box for the
corresponding virtual training images, by calculating the largest bounding box of non-white
pixels. Note that full segmentation masks could also be easily obtained.

4 Adapting from Virtual to Real Domains

4.1 Discriminative Decorrelation: Background

We begin by describing the decorrelation-based approach to detection proposed in [10].
Given an image I, it follows the sliding-window paradigm, extracting a d-dimensional fea-
ture vector ¢ (I, D) at each window b across all locations and at multiple scales. It then scores
the windows using a scoring function

fw(l.b) =w" o (1,b). (1)

In practice, all windows with values of fiy above a predetermined threshold are considered
positive detections.

In recent years, use of the linear SVM as the scoring function f,, usually with His-
togram of Gradients (HOG) as the features ¢, has emerged as the predominant object detec-
tion paradigm. Yet, as observed by Hariharan ez al. [10], training SVMs can be expensive,
especially because it usually involves costly rounds of hard negative mining. Furthermore,
the training must be repeated for each object category, which makes it scale poorly with the
number of categories.

Hariharan et al. proposed a much more efficient alternative, learning fy, with Linear
Discriminant Analysis (LDA). LDA is a well-known linear classifier that models the training
set of examples x with labels y € {0, 1} as being generated by p(x,y) = p(x|y)p(y). p(») is
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Figure 4: (a) Applying a linear classifier w learned by LDA to source data x is equivalent
to (b) applying classifier W = S~'/2w to decorrelated points S~'/2x. (c) However, target
points u may still be correlated after S~!/?u, hurting performance. (d) Our method uses
target-specific covariance to obtain properly decorrelated .

the prior on class labels and the class-conditional densities are normal distributions
p(xly) =N(x;u",8), 2)

where the feature vector covariance S is assumed to be the same for both positive and nega-
tive (background) classes. In our case, the feature is represented by x = ¢ (1, b). The resulting
classifier is given by

w=S" (111 — o) 3)

The innovation in [10] was to re-use S and Uy, the background mean, for all categories,
reducing the task of learning a new category model to computing the average positive feature,
1. This was accomplished by calculating S and gy for the largest possible window and
subsampling to estimate all other smaller window sizes. Also, S was shown to have a sparse
local structure, with correlation falling off sharply beyond a few nearby image locations.

Like other classifiers, LDA learns to suppress non-discriminative structures and enhance
the contours of the object. However it does so by learning the global covariance statistics
once for all natural images, and then using the inverse covariance matrix to remove the non-
discriminative correlations, and the negative mean to remove the average feature. LDA was
shown in [10] to have competitive performance to SVM, and can be implemented both as an
exemplar-based [16] or as deformable parts model (DPM) [5].

4.2 Discriminative Decorrelation for Unsupervised Adaptation

We observe that estimating global statistics S and g once and re-using them for all tasks
may work when training and testing in the same domain, but in our case, the virtual training
data is likely to have different statistics from the target real data. Figure 5 illustrates the
effect of centering and decorrelating a positive mean using global statistics from the wrong
domain. The effect is clear: important discriminative information is removed while irrelevant
structures are not.

Based on this observation, we propose an adaptive decorrelation approach to detection.
Assume that we are given labeled training data {x,y} in the source domain (e.g. virtual im-
ages rendered from 3D models), and unlabeled examples u in the target domain (e.g. real im-
ages collected in an office environment). Evaluating the scoring function fy(x) in the source
domain is equivalent to first decorrelating the training features X = S~ 12, computing their
positive and negative class means fi; = S~'/2u; and iy = S~'/?uy and then projecting the
decorrelated feature onto the decorrelated difference between means, fy(X) = wl'%, where
W = (i1 — tip). This is illustrated in Figure 4(a-b).
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However, as we saw in Figure 5, the assumption that the input is properly decorrelated
does not hold if the input comes from a target domain with a different covariance structure.
Figure 4(c) illustrates this case, showing that S~'/2u does not have isotropic covariance.
Therefore, w cannot be used directly.

We may be able to compute the covariance of the
target domain on the unlabeled target points u, but
not the positive class mean. Therefore, we would
like to re-use the decorrelated mean difference w, but
adapt to the covariance of the target domain. In the
rest of the paper, we make the assumption that the
difference between positive and negative means is the
same in the source and target. This may or may not
hold in practice, and we discuss this further in Sec-
tion 5.

Let the estimated target covariance be T. We first decorrelate the target input feature
with its inverse square root, and then apply w directly, as shown in Figure 4(d). The resulting
scoring function is

Figure 5: Mean bicycle decorrelated
with mismatched-domain covariance
(left) vs. with same-domain covari-
ance (right).

fo(uw)=wa 4)
= (82(uy — o))" (T~20) 5)
= (T72)T87 121y — 1y)) w ©)

This corresponds to a transformation (T~'/2)7 (S~!/2) instead of the original whitening S~
being applied to the difference between means to compute w. Note that if source and target
domains are the same, then (T~'/2)T (S~1/2) equals to S~ since S is positive definite.

In practice, either the source or the target component of the above transformation may
also work, or even statitstics from similar domains. However, as we will see in Section 5,
dissimilar domain statistics can significantly hurt performance. Furthermore, if either source
or target has only images of the positive category available, and cannot be used to properly
compute background statistics, the other domain can still be used.

4.3 Supervised Adaptation

We extend our approach to supervised adaptation when a few labeled examples are available
in the target domain. Following [7], a simple adaptation method is used whereby the template
learned on source positives is combined with a template learned on target positives, using a
weighted linear combination. The key difference with our approach is that the target template
uses target-specific statistics.

In [7], the author uses the same background statistics as [10] which were estimated on
10,000 natural images from the PASCAL VOC 2010 dataset. Based on our analysis above,
even though these background statistics were estimated from a very large amount of real
image data, it will not work for all domains. In section 5, our results confirms this claim.

5 Evaluation

Datasets and Setup. We evaluate our method on the Office dataset [20], a standard bench-
mark for domain adaptation. We use the same setting as [7], performing detection on the
Webcam domain as the target (test) domain, and evaluating on same 783 image test set of 20
categories (out of 31). As source (training) domains, we use: our Virtual and Virtual-Gray
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Virtual Virtual-Gray | Amazon DSLR PASCAL
Virtual 30.8 (0.1) 16.5 (1.0) 24.1(0.6) | 28.3(0.2) | 10.7 (0.5)
Virtual-Gray || 32.3 (0.6) 32.3(0.5) 27.3(0.8) | 32.7(0.6) | 17.9(0.7)
Amazon 39.9 (0.49) 30.0 (1.0) 39.2(0.4) | 37.9(0.4) | 18.6 (0.6)
DSLR 68.2 (0.2) 62.1 (1.0) 68.1 (0.6) | 66.5(0.1) | 37.7 (0.5

Table 2: MAP of detectors trained on positive examples from each row’s source domain
and background statistics from each column’s domain. The average distance between each
set of background statistics(each column) to the true source(each row) and target(webcam)
statistics is shown in parentheses.

data, and the two remaining real-image domains in Office, Amazon and DSLR. Examples of
Amazon and Webcam are shown in Figure 1. We also compare to [7] who use correspond-
ing ImageNet[3] synsets as the source. Thus, there are four potential source domains (two
synthetic and two real) and one (real) target domain. The number of positive training images
per category in each domain is shown in Table 1.

Effect of Mismatched Image Statistics. First, we explore

; > e l Domain [ No. Train ‘
the effect of mismatched precomputed image statistics on Amazon 20
detection performance. For each source domain, we train  [orp 3
LDA detectors using the positive mean from the source, Virtual(-Gray) 30
and pair it with the covariance and negative mean of other ImageNet 150-2000

domains. The virtual and the Office domains are used as
sources, and the test domain is always Webcam. The statis-
tics for each of the four domains were calculated using all of the training data, following the
same approach as [10]. The pre-computed statistics of 10,000 real images from PASCAL,
as proposed in [7, 10], are also evaluated.

Detection performance, measured in Mean Average Precision (MAP), is shown in Table
2. We also calculate the normalized Euclidean distance between pairs of domains as (||S* —
82()/ (1" |+ 1821) + ([l — 121 /(11| + 1 521). and show the average distance to source
and target in parentheses in Table 2. From these results we can see a trend that larger domain
difference leads to poorer performance. Note that larger difference to the target domain also
leads to lower performance, confirming our hypothesis that both source and target statistics
matter. Some of the variation could also stem from our assumption about the difference
of means being the same not quite holding true. Finally, the PASCAL statistics from [10]
perform the worst. Thus, in practice, statistics from either source domain or target domain
or domains close to them could be used. However, unrelated statistics will not work even
thought they might be estimated from a very large amount of data as [10].
Unsupervised and Supervised Adaptation. Next, we report the results of our unsupervised
and supervised adaptation technique. We use the same setting as [7], in which three positive
and nine negative labelled images per category were used for supervised adaptation. Tar-
get covariance in Equation 4 is estimated from 305 unlabeled training examples. We also
followed the same approach to learn a linear combination between the unsupervised and su-
pervised model via cross-validation. The results are presented in Table 3. Please note that
our target-only MAP is 52.9 compared to 36.6 in [7]. This also confirms our conclusion that
the statistics should come from a related domain. It is clear that both of our unsupervised and
supervised adaptation techniques outperform the method in [7]. Furthermore, Virtual-Gray
data outperforms Virtual, and DSLR does best, as it is very close to the target domain (the
main difference is in the camera used to capture images).

Table 1: Source domains.
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Source Source-only [10] | UnsupAdapt-Ours || SupAdapt [7] | SupAdapt-Ours
Virtual 10.7 27.9 30.7 452
Virtual-Gray 17.9 33.0 35.0 54.7
Amazon 18.6 38.9 35.8 53.0
DSLR 37.7 67.1 429 71.4

Table 3: Top: Comparison of the source-only [10] and supervised-adapted model of [7]
with our unsupervised-adapted and supervised adapted models. Mean AP across categories
is reported on the webcam test data, using different source domains for training. Bottom:
Sample detections of the DSLR-UnsupAdapt-Ours detectors.

0. 8
I:Iours virtual-unsup: mAP= 0.330
[ Jours-virtual-sup: mAP= 0.547

%ackpack bike helmet bkcase bottle calc chair lamp cabinet laptop mobile monltormouse mug notebook pen phoneprolectorblnder ruIer

[limagenet only[7]: mAP= 0.496
[Eimagenet-sup[7]: mAP= 0.541

06

Figure 6: Comparison of unsupervised and supervised adaptation of virtual detectors using
our method with the results of training on ImageNet and supervised adaptation from Ima-
genet reported in [7]. Our supervised-adapted detectors achieve comparable performance
despite not using any real source training data, and using only 3 positive images for adapta-
tion, and even outperform ImageNet significanly for several categories (c.f. ruler).

Finally, we compare our method trained on Virtual-Gray to the results of adapting from
ImageNet reported by [7], in Figure 6. While their unsupervised models are learned from
150-2000 real ImageNet images per category and the background statistics are estimated
from 10,000 PASCAL images, we only have 30 virtual images per category and the back-
ground statistics is learned from about 1,000 images. What’s more, all the virtual images
used are with uniform gray texturemap and white background. This clearly demonstrates the
importance of domain-specific decorrelation, and shows that the there is no need to collect a
large amount of real images to train a good classifier.

6 Conclusion

This paper demonstrates that virtual data rendered from freely available 3D models could be
a promising new way to train object detectors on a large scale. In our experiments, detectors
trained on virtual data and adapted to real-image statistics perform comparably to detectors
trained on real image datasets, including ImageNet. Interestingly, our results showed that
non-photorealistic data works just as well as attempts to render more realistic images. The
objects in our evaluation were mostly rigid man-made objects; in future work we plan to
include more non-rigid objects and more categories.
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