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Motivation
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Input images are different
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Adversarial Learning for Domain Adaptation
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Implementation Details

* We use PyTorch

* Baseline model: Deeplab-v2 without multi-scale
* ResNet-101
* Pretrained only with ImageNet
* “65% mean |IOU on Cityscapes

* |t is essential to balance:

e Segmentation network and discriminator
* L segandL_adv



Experimental Results

* GTA -> Cityscapes

Mean |IOU 32.33 42.44

e GTA -> Test Set

Mean IOU 30.3 42.4



Detailed Class Performance on Test Set
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* Improve 17 classes
* 11 classes have improvement over 10%
* 2classes (turn light, motorcycle) perform a bit worse
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Conclusions

* Adversarial learning can help domain adaptation without any hand-
crafted criterions

* Our designed model is end-to-end, one-stage training, and can be
adapted to other segmentation networks

* During inference, there is no extra computation



