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Abstract
The Visual Domain Adaptation Challenge 2021 called for unsupervised domain
adaptation methods that could improve the performance of models by transfer-
ring the knowledge obtained from source datasets to out-of-distribution target
datasets. In this paper, we utilize BeiT [1] and demonstrate its capability of
capturing key attributes from source datasets and apply it to target datasets in
a semi-supervised manner. Our method was able to outperform current state-
of-the-art (SoTA) techniques and was able to achieve 1st place on the ViSDA
Domain Adaptation Challenge with ACC of 56.29% and AUROC of 69.79%.

1 Introduction

1.1 Visual Domain Adaptation
Traditional deep learning methods work really well in a constrained environment
where the target dataset is close to the source dataset on which it is trained on.
However, as demonstrated by [2], any shift in attributes (viewpoints, lightning
conditions, orientations etc) and/or shift in label classes (where the target set
varies/has new classes which aren’t present in source dataset) would could cause
the model to perform poorly and the accuracy to drop significantly. This could
lead to a lot of problems in real-life scenarios if didn’t taken into account. To
solve this problem, we utilize BeiT [1], and demonstrate that it could self-learn
various attributes by itself and can be adapted on new target datasets.

1.2 Related Work
Following AlexNet[3], convolutional neural networks (CNNs) have become stan-
dard for image classification tasks. Various models based on CNNs[4][5][6]
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have been introduced that achieve a significant increase in accuracy on various
datasets[7]. However, these models fail to perform in conditions where there is
a big input distribution shift between training and testing dataset and/or has
label set variance[2]. Transformers such as BiT[8], ViT[9] have demonstrated
significant improvement over CNNs in terms of accuracy at image classification
tasks, however they require huge amounts of data to train. Meanwhile[10] utilizes
the idea of using a single fixation of parse trees for image classification and
attribute learning and[11] improves that by using dynamic routing and fixed
vector representation for image classification, however both of the ideas don’t
work significantly well on large datasets because of its nonlinearity which results
an increase in training complexity.

Domain Adaptation refers to fitting a model that has been trained on a
particular source dataset on an out-of-source novel target distribution, which
is not part of the training set. Closed-Set Domain Adaptation[12][13] methods,
where the source and the target domain completely share the class of their
samples, work extensively well and have low input distribution shifts, however
they fail to work in open-set environments because of unknown target input
samples. Self-supervised learning methods could be used to solve these issues by
either distillation[14] or contrastive learning[15], however these methods have
significant drawbacks[16][17].

2 Proposed Approach
In this section, we will show the proposed method in detail. Figure-1 gives an
overview of the method utilized by us.

2.1 Model: BeiT
BERT[18], along with its Masked Language Modelling (MLM) module has per-
formed wonders in the Natural Language Processing (NLP) domain. Inspired by
BERT, we utilize BeiT-B[1] for performing universal domain adaptation. The
input image is preprocessed and converted into patches, while is also simulta-
neously tokensized by DALL-E[19]. The patches are then masked randomly
and fed to the BeiT-B Encoder which outputs hidden embeddings which are
reconstructed by Masked Image Modelling Head by using input tokens. Since
the idea is to just train the method on ImageNet-1k and test it on a related
but un-constrained dataset with open world settings, we chose this method
because it resembles masked language modelling in BERT. The whole system
is pre-trained on ImageNet-1k, where the Masked Image Modelling module is
able to reconstruct the corrupted patch via self-supervised self-attention and
thus is able to recognize and separate the image without using any labels. After
pretraining, a classification head is attached to the model where the pretrained
model is fine-tuned to perform image classification.
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Figure 1: BeiT Architecture

2.2 Preprocessing
For pretraining, the dataset was resized into 224 x 224 and preprocessed with
random cropping, color jittering, and horizontal flipping. The input image is
then split into 14 x 14 images patches and masked via block-wise masking[1].
Simultaneously, the input image is also tokenized via [19] which would later be
utilized for performing visual patch reconstruction by Masked Image Modelling
head.

2.3 Methods
2.3.1 L-Layer ViT (BeiT)

We denote a dataset of images as X = {x1, ..., xN} where N represents the
total number of images and ∀i ∈ {1, ..., N}, xi ∈ RH×W×C . For image xi,
we will splice it into d number of image patches which is represented as xpi ∈
{xp(i,1), ..., x

p
(i,d)} where each patch is denoted by xp(i,k) ∈ RP×P×C , the number

of patches are d = HW
P 2 , and P 2 is the area of the patch. After slicing, the

patches are masked randomly via blockwise masking algorithm [1]. The patches
are then flattened to form a matrix, vpi ∈ R(P 2C)×d. The embedding matrix
E ∈ RD×(P 2C) and position embedding matrix Epos ∈ Rd×D are linearly are
linearly embedded to the image patch which is fed to the through the L Layers
of the transformers to produce a set encoding vectors HL.
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2.3.2 Masked Image Modelling Head

The dataset of images X = {x1, ..., xN} are also fed into image tokenizer[19]
which converts them into Z = {z1, ..., zN} ∈ V H×W tokens, where W denotes
the width of the image, and H denotes the height, whereas V is the vocabulary
which contains V = {v1, ..., vN} discrete token indices.

2.3.3 Pretraining

We chose to utilize BeIT for domain adaptation because of its semi-supervised
self-attention mechanism. The model consists of a 12-layer transformer with
hidden size of 768 and 12 attention heads. The input image is resized into
224 x 224 resolution, anc converted into 14 x 14 image patches where each
patch is of size 16 x 16. Simultaneously, the input image is also tokenized into
14 x 14 semi-tokens. 40% of the patches are randomly masked via blockwise
masking algorithm and masked regions are attached with learnable embeddings.
The patches are then fed into image transformer (encoder), where it produces
the output, which is fed into masked image modelling head, which takes the
input tokens and patches and tries to reconstruct the corrupted masked patch.
The pre-training objective is to minimize the loss between original token and
reconstructed token derived from the patched image. The loss function is be
denoted by ∑

(xi,x̃i∈D)

(Ezi∼qϕ(z|xi)[log pψ(xi|zi)] + logpθ(z̃i|x̃i)) (1)

where Ezi∼qϕ(z|xi)[log pψ(xi|zi)] denotes visual token reconstruction loss and
logpθ(z̃i|x̃i) represents masked image modelling loss. Here x denotes the original
image x̃i represents corrupted masked image and z denotes tokens obtained from
the tokenizer; p is the pretraining objective which is maximize the log-likelihood
of the corrupt visual tokens given a corrupted image and D represents the
training dataset, qϕ(z|xi) denotes the image tokenizer, pψ(xi|zi) is the function
that decodes original image from visual tokens and pθ(z̃i|x̃i) recover the visual
image patches from corrupted patches.

2.3.4 Fine-tuning

After successful pretraining, a classification head (fully-connected network) is
attached to the model, after which the model is fine-tuned on ImageNet-1k for
another 500 epochs. For the first 400 epochs, the image size is the same as
pre-training input (224 x 224), however, for the last 100 epochs, the images are
reshaped and fed as having 384 x 384 resolution.
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3 Experiment

3.1 Datasets
Due to the model size / training constraint in ViSDA 2021 Challenge [20], the
training dataset provided was ImageNet-1k [7] which contains 1.4M images and
1000 classes. There were also 3 development datasets provided, as shown in
Table 1. which were

1. ObjectNet [2] consisting of 50,000 images with 313 classes where only 113
classes are the same as the source dataset and the images are generally more
difficult to classify due to the large differences in poses and backgrounds
between each image of the same class.

2. ImageNet-R [21] which contains 30,000 images with 200 classes from the
source dataset with varying visual styles and textures.

3. ImageNet-C [22] which is similar to ImageNet however the images are
corrupted.

The development datasets weren’t allowed to be used for training purposes.
However other than that, they could be utilized for model development by tuning
it’s hyperparameters.

Dataset Number of Images Number of Classes Note*
ImageNet(source) 1.4M 1000

ObjectNet 50,000 313 Only 113
classes are
the same as
the source

ImageNet-R 30,000 200 Different tex-
ture/style

ImageNet-C 1.4M 1000 Corrupted

Table 1: Dataset Description

3.2 Training
For the experiment, only ImageNet-1k for training purposes. Even though
ImageNet-C, ImageNet-R and ObjectNet were also allowed to be used for tuning
hyperparameters from the pretrained source model, we in fact, didn’t use it.
Since our model was able to perform visual reconstruction on target visual token
via self-supervised attention mechanism, we believed that it can also be able
to learn various attributes from various images and that information could be
cross-applied to different target datasets [18]. Moreover, we discovered that
the model could also auto-seperate objects and classes without labelling. We
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basically created a random and corrupted mesh of ImageNet-1k images with
random noise and jittering to create a new class in existing dataset to tackle
out-of-distribution classes in the target dataset. We do believe, however that
pretraining self-supervised models on ObjectNet, ImageNet-C and ImageNet-R
will increase the accuracy of the model.

3.3 Implementation Details
The model was pre-trained on ImageNet-1k. The augmentation used consisted
of color-jittering, horizontal flipping and random resized cropping. We ran the
pretraining for 500k steps with 1k batch size. The learning rate of 1.5e-3 and
cosine learning weight decay of 0.05 is used. Adam optimizer with B1 = 0.9 and
B2 = 0.999 is used. The training of 500k steps (1600 epochs) takes about 12
days using Nvidia Tesla V100 32GB GPU cards.

Methods Parameters ACC
ImageNet-1K(pretraining) 86M 82.4%

ImageNet-1K(pretraining + fine-tuning) 86M 83.0%

Table 2: Ablation Studies

The above table shows the top-1 accuracy trained on ImageNet-1k. The
model achieves very high accuracy compared to various state of the art techniques
[23, 8], which generally require larger datasets [24, 25].

3.4 Results: Performance on ViSDA 2021 Challenge
Our model ranked 1st place on the VisDA 2021 leaderboard,outperforming
the second place by 15.04% on source-only accuracy and 7.73% on adapted
model accuracy. To show that our model can outperform any existing domain
adaptation techniques, we didn’t use any development sets at all. Moreover,
Table 3. shows that our adapted AUC is slightly lower than some of the other
entries, that is truly understandable as the model was actually picking attributes
from the source and applying them onto target sets rather than performing a
max-mean discrepancies models which tries to reduce distance between source
and target features. This clearly shows that our model is capable of picking
attributes from the source and it can link those attributes from source-to-target
in a completely self-supervised manner.

4 Future work
In this work, we’ve shown that pretraining transformers can successfully be
applied for performing Domain Adaptation. In future, we would like to extend
this technique to domain adaptation in multi-attribute object detection for
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Methods ACC(Adapted
Model)

AUC(Adapted
Model)

ACC(Source
model)

AUROC(Source
model)

babychick(ours) 56.29 69.79 56.29 69.79
liaohaojin 48.56 70.72 41.25 64.48
chamorajg 48.49 76.86 0.07 50.00

DXM-DI-AI-CV-TEAM 48.60 68.29 25.70 62.43
fomenxiaoseng 45.23 78.76 40.22 60.43

Table 3: Test Source results

successfully transferring the attributes from source to universal target dataset
via textual embeddings

5 Conclusion
In this paper, we apply pre-train and finetune BeiT on ImageNet-1K and demon-
strate that it is able to outperform current state-of-the-art domain adaptation
techniques.
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